
.<¥

99903090 40
0
(0 <

(0 ^ to

12
(0 BSE
^■f c
(0 g

CO a-3

0 Q IO
N

fo

rP

Jt
io

n

+^ CO ("TJO

O 0)
c SI

"E

c
o

rR
IB

U

>p
ro

ve
i

D
is

tr
il

c o CO
T3
o

QL
CO

O)

00
Q

"■I—» +^ CD o 1—

CO Ü ^^ c
CO 0"

mwmm I^H < CD c c
CD ■o 0

Ü
o

3

E w o
DC

0
o

^ 1M I o
o 3 CO

■D

Q
0
C

O
O

5

(0

«vr>°

Documentation for the Marine Jurisdictions Database
Roger A. Goldsmith

Woods Hole Oceanographic Institution
June, 1998

Contents
Disclaimer
1.0 Background
2.0 Project directory structure

2.1 Parent directory MJDB
2.2 Subdirectory SEGS
2 . 3 Subdirectory BASE
2.4 Subdirectory DOC
2.5 Subdirectory MFILES
2.6 Subdirectory SRC

3.0 Components
3.1 Line segment files, ls****.seg
3.2 Area (country) code definition file, MJ_CNTRY
3.3 Line segment range file, MJ_LRNG
3.4 Line segment definition file, MJ_LINED
3.5 Area (country) border definition file, MJ_AREA
3.6 Area (country) range file, MJ_ARNG

4.0 Additional components
4.1 Base points

4.1.1 Base point files, bl****.bas
4.1.2 Base point range file, MJ_BRNG
4.1.3 Base point definition file, MJ_LINEB

4.2 Attribute file, MJ_ATTR
4.3 Location file, MJ_L0C

5.0 Support software
5.1 Matlab routines

5.1.1 mj_init.m
5.1.2 mj_ica.m
5.1.3 mj_ilr.m
5.1.4 mj_iar.m
5.1.5 mj_iaa.m
5.1.6 mj_gcn.m
5.1.7 mj_gc2.m
5.1.8 mj_gc3.m
5.1.9 mj_gct.m
5.1.10 mj_gac.m
5.1.11 mj_gal.m
5.1.12 mj_grl.m
5.1.13 mj_gapl.m
5.1.14 mj_gar.m
5.1.15 mj_gld.m
5.1.16 mj_gad.m
5.1.17 mj_gab.m
5.1.18 mj_gbd.m
5.1.19 mj_gpca.m
5.1.2 0 mj_ina.m

5.2 Utility software
5 2 1 mj_clr.c
5 2 2 mj_car.c
5 2 3 mj_cbr.c
5 2 4 mj_init.c
5 2 5 mj_iac.c

5.2.6 mj_ilr.c
5.2.7 mj_iar.c
5.2.8 mj_ibr.c
5.2.9 ■ mj_iaa.c
5.2.10 mj_getcg.c

5.2.10.1 mj_gcn
5.2.10.2 mj_gc2
5.2.10.3 tnj_gc3
5.2.10.4 mj_gct

5.2.11 mj_gal.c
5.2.12 mj_grl.c
5.2.13 mj_gapl.c
5.2.14 mj_gar.c
5.2.15 mj_gld.c
5.2.16 mj_gad.c
5.2.17 mj_gpra.c
5.2.18 mj_gpca.c
5.2.19 mj_gab.c
5.2.20 mj _gbd.c
5.2.21 mj_pip.c

5.3 Test programs
5.4 Application prototypes, conversion programs

5.4.1 mja_gxy.c
5.4.2 mj a_msg.c
5.4.3 mja_vpf.c
5.4.4 mja_lshp.c
5.4.5 mj a_pshp.c

6.0 Documentation
7.0 Discussion and comments
Acknowledgments
References

Appendices
A: Line segment file format
B: MJ_CNTRY file format
C: MJ_LRNG file format
D: MJ_LINED file format
E: MJ_AREA file format
F: MJ_ARNG file format
G: Base point file format
H: MJ_BRNG file format
I: MJ_LINEB file format
J: MJ_ATTR file format
K: MJ_LOC file format
L: Summary of Matlab routines
M: Example of the Matlab functions
N: Summary of C language utility software
0: Summary of test programs

Disclaimer
Maps and charts used to come with all sorts of disclaimers, cautions and

warnings. Phrases like 'not suitable for navigation' 'subject to change' and
perhaps most appropriate 'the prudent mariner will not rely solely on any single
aid to navigation,...' used to adorn every chart but for whatever reason are not
as common now. There should be no such illusions for this product. The
boundaries are the best representations that could be constructed at this time
for this project. They will undoubtedly change and can be improved as more
information and resources become available. In particular, there are a number
of areas where claims are not recognized by one of the parties involved, or by
third party states of the international community. Assignment of points and
boundaries to specific countries are meant to be advisory or for example only
and do not represent advocacy or primacy of any claim. Recognition of any
claims in this database is neither expressed nor implied and it is the user's
responsibility to verify the current claims status with the Department of State
(USA), coastal states and other sources.

Copyright © Roger Goldsmith, Woods Hole Oceanographic Institution, 1998
All rights reserved.

The information in this document is subject to change without notice.

The names of companies and products herein are trademarks or registered
trademarks of their respective trademark owners.

1.0 Background
Researchers and other oceanographic mission planners are often confronted

with cruises that approach or enter territorial waters claimed by foreign
countries under a variety of jurisdictional agreements or proclamations. Work
in these waters usually requires some type of notice, clearance or
authorization. New claims are being made even as old claims are still being
negotiated between governments or presented before international bodies such as
the Convention on the Law of the Sea or the International Court of Justice.

A chart [Ross, 1992] delineating the various established boundaries then in
effect provided some guidance as to the extent of territorial water (and the
corresponding reduction of 'open-seas'). The chart was well received by the
oceanographic community and there have been ongoing requests for not only the
charts but also the digitized boundaries.

There were, however, several problems were faced in the generation of
xMaritime Claims' chart. There appeared to be no single repository for all the
various types of jurisdictions. While the U. S. Department of State was of
considerable help, information was well distributed and buried in several
offices. Nor could they offer much information about claims being adjudged
between countries not involving the United States. Once these claims became
'official' there seemed to be no mechanism for dissemination to third parties or
any central repository. Finally, while the chart was prepared using digital
representations of the boundaries, they were organized only in the very coarsest
of categories for the jurisdictional elements being portrayed. There was no
topology, that is the ability to associate properties, such as country, with any
point or line. Thus, while the digital boundaries were distributed to a variety
of requestors, they have all been used simply to regenerate the chart boundaries
using a variety of software packages.

The purpose of this project was to take the data gathered for the Maritime
Claims chart and create a Maritime Jurisdictions digital database suitable for
use with oceanographic mission planning objectives. To accomplish this a themed
data set, associated tables, prototype processing software and documentation was
developed. While GIS systems readily lend themselves to this task and the
eventual application of the resulting data set, this product is generated as
ASCII files with positions recorded in decimal degrees. This was done so as to
maximize the deployment options. Users should be able to incorporate this data
set into their own applications using a variety of hardware and operating
systems. In this context it should also be noted this is not a deployable
navigation and display application. The operating environments of the potential
user community are simply too diverse. For display applications alone there
are software packages such as Matlab, gmt, Surfer/MapViewer, ArcView, Atlas GIS,
AutoCAD and many others, all driving a variety of CRTs, pen plotters and laser
printers. To accommodate this diversity the product was made as a simple, easy
to understand database that can be incorporated into a variety of applications.

2.0 Project directory structure
Specific directory path names are of course platform dependent and for that

reason the directory structures have been kept fairly simple. The various
subdirectories were determined primarily with functionality and ease of
maintenance in mind. The software utilities, discussed in later sections,
usually allow the user to specify the paths and specific file identifiers.
Naming conventions of both directories and files has adhered to the 8.3
convention.

2.1 Parent directory MJDB
The parent directory is identified as MJDB and may be placed at the top level

or under some other directory in the user's directory structure. There are no

implicit restrictions on the paths or even the path identifiers for that matter.
Some of the utility software developed in conjunction with the boundary data
allows for the use of default paths and file identifiers but these may me easily
set or overridden by the user.

The MJDB directory contains, mostly as a matter of convenience, some of the
data definition files (MJ_CNTRY, MJ_AREA and MJ_ATTR) as well as the computed
descriptive files (MJ_LRNG, MJ_LINED, MJ_ARNG, MJ_BRNG and MJ_LINEB). These are
discussed in more detail in later sections.

2.2 Subdirectory SEGS

The subdirectory SEGS is the repository for all the files that comprise the
boundaries of the marine jurisdictions. The files are named using the
convention

Is****.seg,

where the '****' field represents a four character integer in the range 0001 to
9999. In practice the range has been restricted from 0001 to 0999; note the
field must be leading zero-filled. The use of some combination of country codes
for the naming convention was considered but any advantages accrued was out-
weighted by the complexity introduced with multiple country masses (Kiribati) or
contacts (United States and Canada). While the use of numbers makes the files a
little less, readily identifiable, each file is internally self-documenting and
the definitions file (MJ_LINED) allows a quick search of various topological
properties associated with the line segment. The contents of the segment files
are described in more detail in a later section.

In theory the segment identifiers may range up to 9999. In fact, to import
the data to a true GIS system there would probably not be any problems. In the
support software developed in association with this project there are some
explicit limits, such as in the array sizes, and some implicit limits. The
latter involves issues of storage methods and access by direct indexing or table
lookups. For this initial project the segment identifiers are used as direct
indices to the storage arrays. This is a workable arrangement as long as the
arrays are neither too large nor sparse. If segment identifiers covering the
whole range 0 to 9999 are desired the software design should be revisited.

2.3 Subdirectory BASE

The subdirectory BASE contains the files of base point data. A few words of
clarification are necessary here. The term 'baseline' seems to be used in at
least a couple of different contexts in the literature and general discussion.
In some cases it has been applied to segments that comprise the actual country
boundaries. This usually seems to occur in cases where the boundary is an
extension of the land boundary between neighboring countries. In the second
context the term refers to a series of line segments which comprise outermost
edge of enclosed waters. At this point the application of the baseline concept
gets a bit murky and political. The line may simply run along land's edge but
this introduces the requirement for defining the term 'land'. Is it high tide,
low tide, mean tide? Does it include reefs or rocks that are sometimes
submerged? The concept is further complicated when a 'baseline' connects two
headlands, with resulting bay now being considered interior to the polygon which
encloses the 'land mass'. Finally, regardless of what a country may claim as
the relevant definitions, it all comes down to whether or not other countries or
the body of world opinion decides to accept the definition.

In this project I have taken the latter definition of 'baseline' and reduced
it even further to that of 'base point'. There were two main reasons for this
decision. First, as described above, there was no consistency in the reporting
of baseline data. Indeed, far less than half the countries have the information
readily available. Beyond the attendant problems of definition there were also
a variety of methods used to describe the baselines. Some countries reported
the points of a continuous enclosing polygon. Others reported base point pairs,
sometimes contiguous, sometimes not, it seemingly being left to the reader to
figure out what happens in the gaps. Sometimes the document said that an arc
was to be drawn in the gap.

The base points, once established and agreed by all parties, do not
objectively determine the resulting country boundary. This was the second and
most compelling reason for including only the base point positions and not the
purported baselines. For a small isolated island it may help in determining the
foci of the 200 nm. radii to the limit. In most cases however, there are
neighboring countries with conflicting claims to be considered. Then the base
points become the jumping-off basis for protracted subjective decisions about
where the boundary actually lays. In other words, given the baselines, or base
points, one still would not be able to determine where the boundary was located
without having a treaty or some additional documentation in hand.

The result of all this means the base points, where available, have been
stored in files in the BASE subdirectory but they are pretty much used only as a
reference. They might help show where claims are in conflict or where a
boundary has been defined or entered erroneously but do not expect much beyond
that. The files are named using the convention

bl****.bas

where the "****" field represents a four character integer in the range 0001 to
9999. In practice the range has been restricted from 0001 to 0999; note the
field must be leading zero-filled. The contents of the files are described in
more detail in a later section.

2.4 Subdirectory DOC

The DOC subdirectory contains this document and related information such as
figures. The document is stored in common formats such as Microsoft Word 97 and
ASCII text. Figures are stored in PostScript.

2.5 Subdirectory MFILES

Much of the initial processing effort for this project was done using the
Matlab software. The processing platform, an old DECstation, had an old
version (4.2c) of the package and I would not recommend doing any prolonged
processing in this manner. Newer releases of Matlab (version 5.0 and higher)
contain a Mapping toolbox and with the speed of a new PC, or workstation, this
combination provides an interesting, low cost method of developing some basic
mapping and charting applications. I have included some of the m-files used in
processing the MJDB data in this directory. They can be used in the with the
basic Matlab package; in fact there are no references to the Mapping toolbox so
the user will have to interface the utilities with their application. The
functions are meant primarily to assist with the task of extracting various
elements of the MJDB. Feel free to rewrite them as necessary. As I said, they
were done with an old version of Matlab and with the idea of providing a simple
prototype to help users understand what the heck is going on. The various

modules are described in more detail in a later section and also are documented
internally in a format compatible with the Matlab HELP facility.

2.6 Subdirectory SRC

While the data files comprising the boundary defining line segments are the
primary products of this project, it was necessary to have some way to check the
processing and simulate the applications in which they might be incorporated.
Not everybody has a full-fledged geographic information system (GIS) or software
packages like Matlab or Surfer. In fact it was expected that applications
already existed that would simply embed the new jurisdictional limits
functionality. Toward that end a suite of programs was developed which would
hopefully assist the applications developer with the task of extracting various
elements of the MJDB.

Several factors were considered during the writing of these programs. All
programs were written using the C language as this (or C++) currently seems to
be the most widely used language among newer applications. Programs written in
FORTRAN should not have much trouble interfacing to these utilities. There is
undoubtedly room for sophisticated use of structures and lots of other neat
programming tricks here. The intent was to keep things simple enough for
programmers with limited experience to understand and incorporate the MJDB into
their own application. To that end it was assumed that reasonable amounts of
memory and adequate processing speed would be available to the user. State-of -
the-art compilers might not be so do not expect anything out of the ordinary in
programming techniques here. Even ANSI compiler options were something not
readily available in the development process. With that said, the programs
compiled without error on both a DECstation using the Ultrix C compiler and on a
Windows NT system using the Watcom C/C++ (Version 11) compiler. Note I said 'no
errors' and not 'no warnings'. Different compilers have different tastes and
there seems no accounting for the latter.

Also included in this subdirectory are the appropriate Unix 'makefiles'. For
those who like to know what is going on I have included the 'makefile' for each
program. These take the form

<program>.mak

and illustrate which types of applications required which modules. For those
who like to push one button and plunge fearlessly forward there is the all
encompassing

Makefile

Which allows the compilation and executable building of individual applications
or everything. This form also constructs a library ('libmjdb.a') of all the
utility routines. The PC applications used the Watcom target management system
to build the executables again using an assembled library of the utility
modules. The PC executables have been included in the PKZIP version of the
directory, as they generally seem to work under most version of DOC. Again, for
portability considerations, the programs are designed to be run under DOS rather
than be dependent on any type of Windows or NT drivers.

Almost all the software modules adopt the convention of beginning with the
character string 'mj'. The programs fall into three main categories. These are

1. Utility modules, including the include file ('mj_incl.h'), of the form
'mj_***.C

2. Test modules, of the form mjt_**.c

3. Applications prototypes, of the form mja_***.c

Each of these is discussed in more detail in later sections and is documented
internally.

3.0 Components
The primary product of this project is the data set of line segments

delineating countries jurisdictional limits. To facilitate the use of these
segments several auxiliary files are also included. These include summaries of
the country codes, identifiers, line segment ranges, area ranges and boundary
definitions. Information has also been included for the points defining country
baselines. Finally, a suite of software has been included which may be used to
test the product and assist the user in the development of applications
software. Each of these components is discussed in more detail in the sections
that follow.

3.1 Line segment files
The main component is the line segment files that make up the maritime

boundaries. In the strictest sense it is the coordinates that make up the line
segments that determine the boundaries. By that definition each coordinate
should be identified as to its source and which line set(s) it belongs in. This
project does not go to that extreme. The line segment files are the base unit
and these files contain the information needed to construct the maritime
boundaries of the selected areas. The information was taken from the digital
data used to construct the Maritime Claims chart [Ross/Fenwick]. The principle
effort of this project was the processing of that data set to obtain a
topologically consistent network of line segments defining the maritime
boundaries of the world's nations. Those files were then updated with the
information furnished by the United States Navy's Office of Naval Research in
the "Maritime Claims Reference Manual". These files are stored in the SEGS
subdirectory and are identified by the following file naming convention:

Is****.seg

In an effort to make this data set as portable as possible these files are
stored in ASCII format. At first glance this might seem to make the file sizes
needlessly large. In fact, storing a {longitude latitude} coordinate pair as
machine dependent binary values would require 8 bytes in single precision, 16
bytes for double precision. Storing the data for a 100-meter resolution (about
0.1 minutes) requires that decimal degrees be stored to at least a 0.001
resolution. The data here has been stored to the 0.000001 resolution, though
that should not be construed as the accuracy of the coordinate positions. In
terms of storage space though, this requires only 22 bytes per coordinate. It
was felt the clarity of the ASCII format, for portability and on-going
maintenance, outweighed the manageable increase in size.

A more significant factor in determining the file size is the number of
points used to define a segment. Where the boundaries are defined by treaty or
other landmarks this number is usually small, on the order of ten points. The
original data set obtained for the Maritime Claims chart was apparently
generated by a digitization process from some unknown source. The lines were
often digitized at a resolution of about one-kilometer resulting in segments
containing on the order of hundreds of points. In most cases no attempt was
made to decimate the segments and the data has been passed along in its original
form.

The use of a numbering scheme in the file naming convention does not
immediately lend itself to a quick visual recognition of the data contained
therein. Each file was therefore designed to contain both comment records and a
descriptive header record. The comment records allow for a more descriptive

identification of the data and also provide a mechanism for identifying the
source of the data. The descriptive header provides the topology of the line
segment as well as some description of the contents of the file. A complete
description of the file format and record content is provided in Appendix A.
The descriptive header information is also used to construct the line definition
file (MJ LINED) which is used to facilitate some of the routine processing and
analysis.

Ideally, only one segment would be necessary to represent the border between
two neighboring areas. In practice however, several segments are sometimes
required to adequately define an interface. A large segment containing over
1000 coordinates was sometimes broken into two or more smaller segments. In
some cases segments approached or diverged from a common point in opposite
directions. Rather than reordering and combining, the segments were just given
separate identification numbers. Finally, as new information became available
whole segments, multiple segments or portions of the segments were replaced.
The later case requires note about the source. As indicated, almost all the
segments were originally obtained by processing the Maritime Claims data set,
source 001. As updates were applied the closely spaced one-kilometer digitized
data could often be replace by just a few exactly located coordinates. If it
was just a portion of the line two options were available: 1) create one or two
new segments in addition to the updated segment, or 2) update the source
identification code. In these circumstances I generally chose the latter as
implicitly everything is from the original source. Two features may help
identify these situations. First, specified coordinates, whether by treaty or
otherwise, are generally discreet in the sense they are usually only defined to
the nearest 0.1 minutes. Additionally, these coordinates are usually defined in
a treaty or list of some sort along with a reference number of letter. This
reference identifier, usually the position in the list, has been carried along
in the segment file as a third column.

The identifiers associated with the various line segments do not have any
strict numbering scheme. That said, there are some informal conventions.
Segments 500 through 899 are usually associated with borders to the open sea.
Thus, most islands may be found in this range. Those segments beginning at 951
are land boundaries but in al other respects follow the format and content
conventions. Why are there land boundaries you wonder? The segments that
constitute the enclosing polygon border usually start and end at a land-sea
interface, though not for islands of course. A straight line connecting the
end-points implicitly closes the polygon. Is this correct? The answer is no.
However, the next question is 'How do we close the polygon?' Should it be the
country land borders? That would allow some nice total area computations and a
complete picture of the national extent. But this would introduce a lot more
data that seems to be just as unsettled as the maritime limits. Should it be
the coastline? It would give a nice picture of the maritime extent but would
also introduce even more data and leave one wondering about high tide, low tide,
the baseline issue and offshore islands. The most open-ended solution was to
let the user application determine how the polygons are closed for anything
beyond the default case. That was the argument but there were some cases that
were just so egregious that they had to be dealt with, if not for appearance
sake then for the point-in-polygon tests that is sort of the whole purpose of
this project. In these cases enough of the relevant land border was extracted
and used to ensure a more suitable closure. In general the borders were heavily
decimated and if the user wishes to implement their own polygon closure method
they may do away with these first-pass solutions.

3.2 Area (country) code definition file, MJ_CNTRY
The line segments make use of area identifiers to determine the topology of

the maritime borders. The ISO-3166 conventions were adopted as the two-

character identifiers used for country/territory identification. These have
been linked with a full country name and a numeric identifier in the file
MJ CNTRY. The two-character codes are useful for a quick association of the
area in question and are found in most of the associated files. However, when
it came time to specify area identifications in associated files a numeric
identifier. Many of the arguments used in the choosing of line segment
identifiers applied here. Furthermore, there are several instances where
countries have multiple, separated components or distant, semi-autonomous
territories. It is possible to set up the topology for these cases, as was done
for some of the simpler cases, it seemed easier to treat these regions as
separate areas. If a new two-character code was assigned here a conflict might
arise later when a new code is assigned. The use of the numeric code as the
basis for any association, and relegating the two-character code to a
descriptive status, will hopefully forestall some of these problems.
The numeric values used have some basis in precedent in that they were used for

the WOCE experiment. At one time they were based on the ATT country codes but
beyond that I am not sure were they came from. It really doesn't matter as long
as they are unique. Using the numeric convention also allows the identification
of non-country areas such as the various oceans. The original codes were in the
range 0001 to 999; codes grater than 999 were developed for this project. Users
who wish to change codes need to make sure the corresponding codes are changed
in the area definition file (MJ_AREA) and the segment files. (Changes to the
later files should be accompanied by updating the MJ_LINED file.)

The entries in the MJ_CNTRY file are initially sorted by the two-character
code but this is not a requirement. The file may be sorted in any order, or not
sorted at all. Most of the applications developed load this file at
initialization time. Keep in mind that applications should not hard-wire
locations in the table in case the order is changed or a subset of the table is
used. A more detailed description of the table format and content is given in

Appendix B.

3.3 Line segment range file, MJ_LRNG
This file is a secondary product derived from the line segment files. The

processing is performed by the support utility routine 'mj^lr' , described in
another section of this report. The geographic minimum and maximum extents of
the line segment are determined and the result is put in this file for each line
segment. All range values are converted to positive degrees. Some of the
segments will have a maximum longitude greater than 360 degrees as a result of
straddling the Greenwich Meridian. A more detailed description of the file
format and content may be found in Appendix C.

The file is not required as part of the Marine Jurisdictions Database. It is
used only in conjunction with the support software provided as part of this
project. By pre-computing the line segment ranges it speeds up operations like
the computation of the area ranges. There is no order requirement but the
manner in which the ranges are computed results in a numerical line segment
order. There is also no limit on the size of this file. Having said that
however, there are some limits associated with the number and maximum value of
segment identifiers in some of the prototype software.

3.4 Line segment definition file, MJ_LINED
This file is another secondary product derived from the line segment files.

The support utility routine vmj_clr', described in another section of this
report, generates the file MJ_LINED' at the same time as the 'MJ_LRNG' file.
The contents of this file are basically the same as appears on the line
descriptor record of the line segment files. A more detailed description of the
file format and contents is contained in Appendix D. The topology information
is used to speed operations such as the search for segments belonging to an

10

area. In cases such as disputed borders an area may have associated line
segments that do not appear as part of the defined border. This type of
topology, as well as line type and other information, is contained in the line
segment definition file.

The file is not required as part of the Marine Jurisdictions Database. It is
used only in conjunction with the support software provided as part of this
project. There is no order requirement but the manner in which the segments are
processed results in a numerical line segment order. Again, there is no limit
on the size of this file, though there may be some limits associated with the
number and maximum value of segment identifiers in some of the associated
software.

3.5 Area (country) border definition file, MJ_AREA
The border definition file ,MJ_AREA' is used to determine the line segments

that comprise the marine jurisdictional limit of an area or country.
Furthermore, the order and sense of the line segments is specified so as to
construct a polygon. The result is a continuous line enclosing the selected
area to the right-hand side as one moves along the coordinates of the line. (As
described earlier, the polygon may be implicitly closed across the land surfaces
of the area.) A complete description of the file format and content is given in
Appendix E.

The are several ways to specify the topology of an area. Most involve some
sort of linked list and that is essentially what this file is. Strictly
speaking only the order of the line segments is needed, with the sense (area to
the left or right) being determined from the line segment descriptor record or
the descriptor file 'MJJLINED'. I have adopted the additional convention of
signing the numerical line segment identifier as a way of expediting the
processing for the utility software. It also makes the file more intuitive when
checking for consistency.

Only countries with maritime boundaries are included in the initial version
of the file. There are some areas bordering territorial seas such as the Baltic
and Mediterranean that have not been completely defined. Theoretically there
can be any number of areas in the file and each area can contain as many
segments identifiers as necessary to describe the boundary. The processing
software generally has some limits however.

3.6 Area (country) range file, MJ_ARNG
This file is a secondary product derived from the area definition and line

segment range files. The processing is performed by the support utility routine
'mj^ar' , described in another section of this report. The geographic minimum
and maximum extents of the area are determined and the result is put in this
file for each area defined in the 'MJ_AREA'. All range values are converted to
positive degrees. Some of the segments will have a maximum longitude greater
than 360 degrees as a result of straddling the Greenwich Meridian. A moore
detailed description of the file format and content may be found in Appendix F.

The file is not required as part of the Marine Jurisdictions Database. It is
used only in conjunction with the support software provided as part of this
project. By pre-computing the area ranges it speeds up operations like the
point-in-polygon searches. There is no order requirement but the manner in
which the XMJ_AREA' file is processed implies this file will be in the same
order.

11

4.0 Other components
Several other components of the data are provided. None of these are

necessary for the implementation of the Marine Jurisdiction database. They are
a combination of useful information and data sets that were helpful in the
processing stage of the project. Information such as the points determining the
baselines might also be necessary if the project evolves into a more
sophisticated GIS system.

4.1 Base points
As detailed in an earlier section, the baseline data is not very complete;

documents or data were available for fewer than 25% of the countries. And in
general the maritime limits cannot be determined from the baseline data alone.
However, as the data was available and being processed at the same time as the
boundary data it has been carried along here in an analogous format. The two
types of derived files, the ranges and the descriptions are also provided.

4.1.1 Base point files, bl****.bas
The coordinates of the points comprising the baselines are stored in the

'BASE' subdirectory. The file naming convention was described earlier. As not
much that can be done with the current state of the data, the points were
entered in a format similar to that used for the line segments. A more detailed
description is given in Appendix G. The primary difference is the points should
be treated individually. While in some instances connecting them may form a
contiguous 'shoreline' that is generally not the case. Various documents
describe the points as being connected sequentially or in pairs, by straight
lines or arcs. Ideally the baseline points along the coast would be combined
with the points defining the land borders and thereby create the defining
territorial boundary. That effort was beyond the scope of this project but
perhaps the baseline data gathered here will provide the impetus for further
work in the area.

Other subtle differences are evident in the use of the file format. Because
the baselines are internal to the country there is no associated area topology.
The fields are here left intact for compatibility with the boundary line segment
format but are both filled with the same area identifier value. The line-type
and attribute fields similarly contain only generic values.

4.1.2 Base point range file, MJ_BRNG
The baseline range file and the following descriptor file are generated

primarily to provide symmetry with the boundary line segment files. It provides
a good initial check of the values. Ultimately, if the land borders were
included for a country this file might be a useful step in computing the maximum
extent of the territorial boundaries in much the same manner as the 'MJ_LRNG'
file is used in the creation of the ,MJ_ARNG' file. But for now the file is not
really used for anything. The format, analogous to that used in the 'MJJ^RNG'
file, is described in Appendix H.
This file is a secondary product derived from the base-point files. The

processing is performed by the support utility routine 'nr^cbr' , described in
another section of this report. The geographic minimum and maximum extents of
the base points are determined and the result is put in this file for each
baseline. All range values are converted to positive degrees. Some of the
baselines may have a maximum longitude greater than 360 degrees as a result of
straddling the Greenwich Meridian.

The file is not required as part of the Marine Jurisdictions Database. It is
used only in conjunction with the support software provided as part of this
project. There is no order requirement but the manner in which the ranges are
computed results in a numerical order. There is also no limit on the size of
this file. Having said that however, there are some limits associated with the

12

number and maximum value of segment identifiers in some of the prototype
software.

4.1.3 Base point definition file, MJ_LINEB
This file is another secondary product derived from the base point files.

The support utility routine 'mj_cbr', described in another section of this
report, generates the file MJ_LINEB' at the same time as the *MJ_BRNG' file.
The contents of this file are basically the same as appears on the descriptor
record of the base-point files. A more detailed description of the file format
and contents is contained in Appendix I. The topology information is used to
speed operations such as the search for segments belonging to an area.

The file is not required as part of the Marine Jurisdictions Database. It is
used only in conjunction with the support software provided as part of this
project. There is no order requirement but the manner in which the segments are
processed results in a numerical base-point order. Again, there is no limit on
the size of this file, though there may be some limits associated with the
number and maximum value of baseline identifiers in some of the associated
software.

4.2 Attribute file, MJ_ATTR
The attribute file was developed as a place to store various attributes that

might be associated with an area. One of the first applications was the need to
identify groups of countries, such as all those that had approved baselines,
ratified the Law of the Sea treaty or some other qualifying attribute. Of
course this is all very straightforward with a database and GIS system. Some of
the properties include in the area border definition file might also have been
more readily incorporated in this file.

The file is not required as part of the Marine Jurisdictions Database. It is
used only in conjunction with the support software provided as part of this
project. There is no order requirement but if the entries are not the same as
defined in the MJ_AREA file the user will have to implement a method of indirect
indexing. The preliminary version of this file has arbitrarily assigned the
color of white [1.0 1.0 1.0] to all countries. Some oceans have also been
inserted and given the color [0.0 1.0 1.0]. The user may of course develop one
or many attribute tables implementing any color scheme they choose.

4.3 Location file, MJ_LOC
Another potentially useful data set contains the coordinates of locations

associated with the marine boundaries. There are many sources for this type of
data. The locations of ports for many countries can be obtained from the
National Imagery and Mapping Agency (NIMA). The ports, along with country
capitals, have been placed in the file 'MJ_L0C. The purpose here is not to
duplicate the efforts of NIMA but to provide some convenient utility to this
initial project and give some examples of what might be pursued in the future.
The World Port Index developed at NIMA is an extensive compilation of ports and
associated facilities and should be reviewed.

The version of the file developed here includes both the numeric and two-
character country codes to assist in the identification and maintenance of the
locations. Other types of point information could also be placed in this or
similar files. Here, the file also contains information for countries that do
not have marine borders. A more sophisticated version of the data set might
also wish to keep track of the type of the location but that is beyond the scope
of this project. There are no order requirements for this file, though in this
version the entries have been sorted by the two-character country code and by
city name within the country. A more detailed description of the file is
contained in Appendix K.

13

5.0 Support software
The software developed during the processing of the boundary data has been

included to serve as both documentation of the data structure and provide some
example of its use. The Matlab routines were used primarily for the processing
and a few enhancements were added to provide some applications utility as well.
These modules are stored in the 'MFILES' subdirectory.

The C language programs were developed as tests to ensure the database
integrity and suitability for applications development. Additional modules were
developed to provide the same functionality as the Matlab routines. These have
all been placed in the 'SRC subdirectory along with associated Unix-style
'makefiles'.

5.1 Matlab routines
For those unfamiliar with Matlab, it is a relatively inexpensive 'numeric

computation and visualization software' package that is widely used on both Unix
and PC platforms. Its command language provides a large library of routines
that allow users to perform interactive analysis or construct their own
applications. A number of toolboxes are provided that extends the applications
into a variety of fields such as signal processing and mapping. The Matlab
routines presented here were developed using the basic Application Toolbox but
are compatible with the Mapping Toolbox. All the functions have the
conventional comments at the beginning that work with the Matlab 'help'
facility. A summary of the routines is given in the 'Content.m' file and is
shown in Appendix L. A slightly more detailed description is given in the
sections that follow but the best documentation is contained in the code itself.

In the following sections the routines are broken into initialization and
retrieval classes. In a rough manner they also are the order in which they
might be invoked. A final section is presented with some sample applications.

5.1.1 mj_init.m
The routine 'mj_init' is the initialization and should be the first one

called. It sets up the default file locations and identifiers. A function that
checks the type of machine does this. The user should edit these routines for
use in their environment. Finally, it makes available to the user a number of
global variables containing information such as the area identifiers, line and
area ranges and area attributes.

Usage: mj_init

5.1.2 mjiac.m
The routine 'mj_iac' initializes the area identifiers by loading the arrays

CN, C2, C3, and CT. It processes the area code definition file ('MJ_CNTRY') by
default but allows the user to load a file of their choosing. This
initialization step is almost always necessary.

Usage: mj_iac (mj_cntry_file)
where

mj_cntry_file is the optional file identifier specifying the location of
the file.

Returns: The global arrays CN, C2, C3 and CT are stored.

5.1.3 mj_ilr.m
The routine 'mj_ilr' initializes the longitude and latitude range arrays

associated with each line segment. This initialization routine is necessary
before a variety of subsequent routines.

14

Usage: mj_iar (r_file)
where

r_file is the string identifying the location of the line range file
('MJ_LRNG')• The 'MJ_LRNG' file is created during execution of the
program 'mj^lr.c'. The file simply contains the {Ion lat} ranges
associated with each line segment to simplify searches.

Returns: The global array LRANGE is stored. It contains the following columns:
line_code, lon_min, lon_max, lat_min, lat_max

5.1.4 mj_iar.m
The routine 'mj_iar' computes the geographic range of an area based on the

range segments comprising the area. This initialization is necessary before
using the point in area routines. This module does not load the pre-computed
'MJ_ARNG' file but rather uses the line segment range file 'MJ_LRNG' and the
area definition file 'MJ_AREA' to compute the ranges for the current
application.

Usage: mj_iar (a_file, r_file)
where

a file is the string identifying the location of the area definition file.
The default is the file 4MJ_AREA'.

r file is the string identifying the location of the line segment range
file. The default file 'MJ_LRNG' could have been created by running
the program 'mj^lr.c'.

Returns: The global array ARANGE, containing values of the area code,
longitude minimum, longitude maximum, latitude minimum and latitude
maximum, is computed.

5.1.5 mj_iaa.m
The routine lmj_iaa' loads the area attributes from a file to the internal

arrays.

Usage: mj_iaa (a_file)
where

a_file is the string identifying the location of the area attribute file.
The default is the file 'MJ_ATTR'.

Returns: The current version of the routine loads the color array 'COL_RGB'.

5.1.6 mj_gcn.m
The routine ,mj_gcn' requires a user specified two-character area code and

returns the area identifier. The basic utilities are in the routine 'mj_gac';
this is just a shell.

Usage: [area_n] = mj_gcn (area_c2)
Where

area_c2 is the two-character area identification code.
Returns: The numeric area identifier or zero if none is found.

5.1.7 mj_gc2.m
The routine 1mj_gc2' requires the user to specify a numeric area identifier

and returns the two-character area code. The basic utilities are in the routine
'mj_gac'; this is just a shell.

Usage: [area_c2] = mj_gc2 (area_n)
where

area_n is the integer area identification code.
Returns: The two-character area code or null if none is found.

15

5.1.8 mj_gc3.m
The routine ,mj_gc3' requires the user to specify a numeric area identifier

and returns the three-character area code. The basic utilities are in the
routine 'mj_gac'; this is just a shell.

Usage: [area_c3] = mj_gc2 (area_n)
where

area n is the integer area identification code.
Returns: The three-character area code or null if none is found.

5.1.9 mj_gct.m
The routine 'mj_gct' requires the user to specify a numeric area identifier

and returns the associated area descriptive text. The basic utilities are in
the routine 'mj_gac'; this is just a shell.

Usage: [area_str] = mj_gct (area_n)
where

area n is the integer area identification code.
Returns: The text string array containing the full text identifier of the area

or null if none is found.

5.1.10 mj_gac.m
This routine is the basic area code transformation utility. Given an area

code in one form it returns the code in the requested form.

Usage: [area_id, area_str] = mj_gac (method, code_n, code_a)
where

method is the integer value specifying the type of request;
-3 - given 3 character code, find numeric code;

-■> -2 - given 2 character code, find numeric code;
2 - given numeric code, find 2 character code;
3 - given numeric code, find 3 character code;
4 - given numeric code, find text identifier.

code_n is the numeric country code. This is ignored if the method is
negative; any value may be given.

code_a is the alphanumeric country code. This is ignored if the method is
positive; any value may be given.

Result: The routine returns both the numeric and string identifiers for the
area or zero and null if the area was not found.

5.1.11 mj_gal.m
The routine ,mj_gal' retrieves the identifiers of all line segments bounding

the user specified target area. It does this by searching the user specified
line definition file.

Usage: [seg_id] = mj_gal (d_file, area_n)
where

d file is the string identifying the location of the line descriptor
~~ format file. The default is the 'MJ_LINED' file created by the

program 'rrr^clr.c'.
area_id is the numeric area code identifier of the target area.

Returns: The vector containing the qualifying line segment identifiers. The
lines are retrieved in the order encountered. Negative identifiers
indicate reverse order of the line using the convention of target area on
the right.

16

5.1.12 mj_grl.m
The routine 'mj_grl' is used to retrieve the line segment identifiers of all

line segments whose range overlaps a user specified rectangular geographic
range. To perform this analysis it uses the range array 'LRANGE' loaded by the
routine *mj_ilr'.

Usage: [seg_id] = mj_grl ([range])
where

range is a vector of the form [lon_min lon_max lat_min lat_max] used to
specify the 'rectangular' geographic region of interest.

Returns: The vector containing the qualifying line segment identifiers. The
lines are retrieved in the order encountered in the LRANGE array. Note
that while the range of the line may overlap the specified area the line
segment itself may fall entirely outside the area.

5.1.13 mj_gapl.m
The routine 'mj_gapl' is used to retrieve the ordered identifiers of line

segments bounding the specified target area such that they would form a closed
polygon. This differs from the ,mj_gal' routine both in the fact that it is
ordered and contains only those segments comprising the border.

Usage: [seg_id] = mj_gapl (a_file, area_n)
where

a file is the string identifying the location of the area definition file.
~ The default condition is to use the file 'MJ_AREA'.
area_n is the numeric area identifier of the target area.

Returns: The vector containing the qualifying line segment identifiers. The
lines are retrieved in the order encountered in the area definition file.
Negative identifiers indicate reverse order of the line using the
convention of target area on the right.

5.1.14 mj_gar.m
The routine ,mj_gar' retrieves the geographic extents for the user-specified

area. The initialization routine >mj_iar' must have been previously invoked to
compute the ARANGE array.

Usage: [lon_min lon_max lat_min lat_max] = mj_gar (area_n)
where

area_n is the numeric area code identifier.
Returns: The four-element vector containing the range of the area. Note that

the current version of the program will include any auxiliary lines that
might have been included to form a closed polygon incorporating the coast.

5.1.15 mj_gld.m
The *mj_gld' is the basic data point retrieval routine. It gets the {Ion

lat} data for the requested line segments.

Usage: [xdeg, ydeg] = mj_gld (seg__path, seg_id, lplot)
where

seg__path is the string identifying the directory location of the
>ls****.seg' line segment files.

seg_id is the vector containing the line segment identifiers; the lines
~~ are retrieved in the order specified. Negative identifiers indicate

reverse order of line,
lplot is a display option switch.
0 = no plot; 1 = plot lines; 2 = also label lines

17

lhemi optional hemisphere switch for dateline wrapping. By default it
will go to the Eastern Hemisphere unless this value is negative.

Returns:
xdeg is the line longitude coordinates, in decimal degrees,
ydeg is the line latitude coordinates, in decimal degrees.

5.1.16 mj_gad.m
The ,mj_gad' routine is the shortcut method used to retrieve the coordinate

data that forms the closed border polygon of the requested target area. It
performs the functions of getting the line segment identifiers then retrieving
the data. This routine however returns the coordinates as a single line.

Usage: [xdeg, ydeg] = mj_gad (a_file, area_n, lplot)
where

a_file is the string identifying the file location of the area definition
file MJ_AREA.

area_n is the vector containing the area identifiers;
lplot is a display option switch.

0 = no plot; 1 = plot lines; 2 = also fill lines
Returns:

xdeg is the line longitude coordinates, in decimal degrees,
ydeg is the line latitude coordinates, in decimal degrees.

5.1.17 mj_gab.m
The routine ,mj_gab' is used to retrieve the identifiers of all baseline

segments bounding the specified target area identifier.

Usage: [seg_id] = mj_gab (d_file, area_n)
where

d_file is the string identifying the location of the line descriptor file
(MJ_LINEB).

Returns:
seg_id - is the vector containing the line segment identifiers; the lines

are retrieved in the order encountered in the line descriptor file.

5.1.18 mj_gbd.m
The routine 'mj_gbd' is used to retrieve {ion lat} data for the requested

baseline segments. These are optionally plotted as points.

Usage: [xdeg, ydeg] = mj_gbd (base_path, seg_id, lplot)
base_j>ath is the string identifying the directory location of the

<bl****.bas' baseline node files.
seg_id is the vector containing the baseline identifiers; the lines are

retrieved in the order specified. Negative identifiers indicate
reverse order of line.

lplot is a display option switch.
0 = no plot; 1 = plot points; 2 = also label lines

lhemi is an optional hemisphere switch for dateline wrapping. By default
it will go to the Eastern Hemisphere unless this value is negative.

Returns:
xdeg is the line longitude coordinates, in decimal degrees,
ydeg is the line latitude coordinates, in decimal degrees.

5.1.19 mjgpca.m
The ,mj_gpca' routine retrieves the country.code numeric identifiers of all

requested points. This program uses the area range file as stored in array
ARANGE. The array could have been read in from a user-generated file or computed

18

in the initialization routine 'mj_iar'. The ARANGE array is used to simplify
the search for the area in which a point is located. It can eliminate those
countries it can not be in. Multiple hits still have to be tested for the
defined polygons and this operation is done in the routine 'mj_ina'. Even one
hit does not ensure it is uniquely in the area. In the case of multiple entries
only one is returned and a message is printed for subsequent hits. Points not
located in any area, e.g. land or open sea, return a NaN code.

Usage: [cnty_id] = mj_gpca (xlon, ylat) •
where

xlon is the longitude of the point, in decimal degrees.
ylat is the latitude of the point, in decimal degrees.

Returns: cnty_id is the vector, though technically it should be only one
element long, containing the country identifiers.

5.1.20 mjina.m
The routine 'mj_ina' determines if point is in an area polygon. Given a point

and line defining a polygon, see if the point is inside the polygon (or on the
border).

Usage: [in_area] = mj_ina (xp, yp, xa, ya)
xp is the longitude of a single point, decimal degrees.
yp is the latitude of a single point, decimal degrees.
xa is the longitude vector of line determining a polygon; decimal degrees.
ya is the latitude vector of line determining a polygon; decimal degrees.

The last point need not close with the first. Consecutive duplicate
points are handled.

Returns: in area is 0 if outside polygon area; 1 if inside area or on border.

19

5.2 Utility software
The C language utility software was developed as tests to ensure the database

integrity and suitability for applications development. Additional modules were
developed to provide the same functionality as the Matlab routines. These have
all been placed in the »SRC subdirectory along with associated Unix-style
'makefiles'. Global variable definitions and array allocations are done in the
include file vmj_incl.h'. This is not very sophisticated code. It was designed
not to use any tricks or non-standard C language features. Working on somewhat
antiquated systems has the advantage of forcing the development of software that
can be easily ported. These compiled on both a DEC Ultrix system and an NT
windows system using Watcom C/C++. The programs do not use any Windows or NT
drivers so they are executed under just about any version of DOS.

5.2.1 mj_clr.c
'mj clr' is a utility program which takes files of line segments (type

ls****.seg) and computes the ranges, creating the line range file ('MJ_LRNG')
and the line descriptor file ('MC^LINED'). The program additionally checks the
consistency of the line segment identifier in the comment and descriptor
records, as well as the node count. The node count should not really be
necessary in analysis but was useful in the data collection and has been carried
along.

This program should be run after the initialization routine 'rnj^nt' and
before the area range initialization routine 'mj^ar' . Note that the files are
only used as part of the software and are not a required part of the basic
database. This file is only an aid to creating the files two files; if the user
has an alternative method for creating the files, compute away.

Usage: Command line requirements and options.
mj_clr.exe <seg_path> [-D,MJ_LINED>] [-N<seg_number>] [-R<MJ_LRNG>]

where
<seg_path> is the path to the directory containing the line segments.

Default = 'SEGS/1.
-D<MJ_LINED> is the optional identifier for the file of line

segment descriptor fields. If the option is not specified the file
'MJ_LINED' is created.

-N<seg_number> is a request for a specific line segment number. Take
care that you do not write over the existing range file unless that
is your intent. If no segment is specified all files are processed,
or at least those up to the maximum number NMAX = 1000.

-R<MJ_LRNG> is the optional identifier for the file of line segment
ranges. If the option is not specified the file 'MJ_LRNG' is
created.

Results: Creates the files %MJ_LINED' and 'MJ^RNG'. See the separate sections
for a more detailed description of those files.

5.2.2 mjcar.c
The routine 'mj_car' is a C language program used to extract line segments

associated with a country. It then computes the rectangular longitude/latitude
ranges (minimum and maximum) suitable for entry in file 'MJ_ARNG'. The program
requires the numeric country code but allows the optional use of the two-
character alphanumeric. If no codes are given all the countries in the
'MJ_AREA' file are processed.

As with the analogous routine 'mj_clr', this does not make use of any of the
library routines in order to keep sort of an independent check of what is going
on. If you want to modify it go ahead. Again, the files program and resulting
files are not part of the basic database but are used with the support software.

20

Usage: Command line requirements and options.
mj_car.exe [-A<area_definition_file>] [-D<line_descriptor_file>]

[-R<line_range_file>] [-0<area_range_file>]
where

-A<area_definition_file> is the file defining the order of
segments constituting the maritime boundary. The default if not
specified is the VMJ_LINED' file.

-D<line_descriptor_file> is the file containing the line
topology. The default if not specified is the 'MJ_LINED' file

-R<line_range_file> is the file containing the line segment ranges.
The default file if not specified is 'MJ^RNG' .

Result:
-0<area range_file> is the optional specification of the output file.

The default is *MJ_ARNG'

5.2.3 mj_cbr.c
'mj_cbr' is a utility program which takes files of baseline coordinates (type

bl****.bas) and computes the ranges, creating the baseline range file
pMi^BRNG') and the line descriptor file (*MJ_LINEB'). The latter is done
because we are doing all the validation here anyway.

The program additionally checks the consistency of the line segment id in the
comment and descriptor records, as well as the node count. The node count
should not really be necessary in analysis but was useful in the data collection
and has been carried along.

Usage: command line requirements and options:
mj_cbr.exe <seg_path> [-N<seg_number>] [-R<MJ_LRNG>]

where
<seg_path > is the path to the directory containing the line segments.

Default = 'BASE/'.
-B<MJ_LINEB> is the optional identifier for the file of

baseline segment descriptor fields. If the option is not specified
the file 'MJ_LINEB' is created.

-N<seg_number> is a request for a specific line segment number. Take
care that you do not write over the existing range file unless that
is your intent. If no segment is specified all files are processed,
or at least up to the max number NMAX = 200.

-R<MJ_BRNG> is the optional identifier for the file for the file of base
point ranges. If the option is not specified the file (MJ_BRNG' is
created.

5.2.4 mj_init.c
The program 'mj_init' performs the initialization of various paths and files

for the Marine Jurisdictions suite of programs. It allows the user to set up a
default environment.

Usage: mj_init (computer)
where

computer is a passed string argument that allows the user to select an
environment. The argument may in fact be any identifying string
that the user may want to test.

5.2.5 mj_iac.c
Program 'mj_iac' is a C language program used to initialize areas with

country identifiers. It simply reads in the file and loads up internal arrays.

21

Conceptually it might be a nice place for using structured elements but this
version of the program is not that complicated.

Usage: iopstat = mj_iac (mj_cntry_file)
where

mj_cntry_file is the optional file identifier specifying
the location of the file.

Results: The program returns a zero value if the operation was successful.
The global arrays CN, C2, C3 and CT are stored.

5.2.6 mj_ilr.c
mj_ilr' is a C language program which loads internal arrays with the values

of line segment ranges stored in the file 'MJ_LRNG'. The range of each line was
computed by program 'mj_clr' and stored in a file, the default system identifier
being 'MJ_LRNG'. This initialization routine is called once to store the
values, along with other descriptor information, in internal arrays.
Technically we could run through this file when we needed it, but under the
current scheme there are not that many files and we can store them to speed up
things like line segment searches in ranges, with areas, line types or depths.
(The latter are not yet utilized but there they are.) To further speed things
up the line segment identifiers are used as indices to the array. (As a further
nod to inefficiency but simplicity, we leave 0 empty and use the index
directly.) NOTE: This is possible because of a couple of valid assumptions
that should be stated explicitly.
1) The internal segment identifier, found on the descriptor record, is assumed

correct. Program 'mj_clr' checked this on file creation but if you rolled
your own and mess up you could overwrite information for a segment.

2) The segment identifiers are assumed to be pretty much contiguous, with only a
few gaps, so the big array is not just air.

Usage: iopstat = mj_ilr (r_file, d_file)
where

r file is the string identifying the location of the line range file
(lMJ_LRNG')• The (MJ_LRNG' file is created during execution of the
program 'mj^lr.c' . The file simply contains the {Ion lat} ranges
associated with each line segment to simplify searches.

d_file is the string identifying the location of the line descriptor file
('MJ_LINED'). The 'MJJuINED' file is created during execution of
the program 'mj_clr.c'. The file simply contains the descriptors
associated with each line segment to simplify searches.

Results: The program returns a zero value if the operation was successful.
The global arrays LRANGE[4], L_TYPE, L_DEPTH and LCC[2] are stored. These
correspond directly to the fields described in the file format. Of
particular use is the LCC array, element [0] containing the identifier of
the area to the left of the segment and element [1] containing the
identifier of the area to the right.

5.2.7 mjiar.c
Program 'mj_iar' is written in the C language and computes the rectangular

range of an area based on the range of segments comprising the area. This is
necessary initialization for the area of point (country) routine 'mj_gpca'.
This is done using the segments defining the area (in 'MJ_AREA') and the pre-
computed segment ranges (in 'MJ_LRNG' and loaded with 'mj_glr')• This function
usually only requires one call prior to using the routine 'mj_gpca'.
Alternatively the user may load the array from a previously computed or saved
file.

22

Usage: iopstat = mj_iar (a_file)

where
a file is the string identifying the location of the area definition

file 'MJ_AREA'.
Results: The program returns a zero value if the operation was successful.

The global arrays VAREA_ID' and 'ARANGE' are computed. They contain the

following information.
area/country_code lon_min, lon_max, latjnin, lat_max

5.2.8 mj_ibr.c
mj ibr1 is a C language program which loads the values of baseline coordinate

ranges stored in the file 'MJ_BRNG'. The range of each line was computed by
program 'mj_cbr' and stored in a file, the default system identifier being
'MJ_BRNG'. This initialization routine is called once to store the values,
along with other descriptor information, in internal arrays. Technically we
could run through this file when we needed it, but under the current scheme
there are not that many files and we can store them to speed up things like

baseline searches in ranges.
1) The internal segment identifier, found on the descriptor record, is assumed

correct. Program 'mj_cbr' checked this on file creation but if you rolled
your own and mess up you could overwrite information for a segment.

2) The segment identifiers are assumed to be pretty much contiguous, with only a

few gaps, so the big array is not just air.

Usage: iopstat = mj_ibr (r_file, b_file)

where
r file is the string identifying the location of the baseline range
~ file ('MJ_BRNG')- The 'MJ_BRNG' file is created during execution of

the program 'mj_cbr.C. The file simply contains the {Ion lat}
ranges associated with each baseline segment to simplify searches.

b file is the string identifying the location of the baseline descriptor
~ file ('MJ_LINEB'). The 'MJ_LINEB' file is created during execution

of the program 'mj_cbr.c'. The file simply contains the descriptors
associated with each baseline segment to simplify searches.

Results: The program returns a zero value if the operation was successful.
The following global arrays are created:
BRANGE[] [4] It contains the information lon_min, lon_max, latjnin, latjnax

B_CC[] Integer area codes.

5.2.9 mj_iaa
Program 'mj_iaa' is a C language program used to initialize area attributes.

The current version of the program is just a prototype used to store the
something like the color. A user might use this to categorize groups of
countries and use the color attribute either for selection or display.

Usage: iopstat = mj_iaa (mj_attr_file)

where
mj_attr_file is the optional file identifier specifying the location

~~ of the file 'MJ_ATTR' type file.
Results: The program returns a zero value if the operation was successful.

The global array 'COL_RGB' is the only array stored in the current version
of the program. The program uses a table look-up to put the array in the
same order and location as the area code array 'CN'.

5.2.10 mj_getcg.c
The routine 'mj_getcg' is a C language program used to extract a requested

country identifier given a known property. It is the basic area-identifier

23

conversion routine used to process user requests directly or from the other
conversion specific utilities. The type of conversion is determined by the
specified method.

Usage: iopstat = mj_getcg (method, &code_n, code_a)
where

method is the integer type of request;
-3 given 3-character code, find numeric code;
-2 given 2-character code, find numeric code;
2 given numeric code, find 2 character code;
3 given numeric code, find 3 character code;
4 given numeric code, find text identifier.

code_n is the numeric country code. It may be either furnished or
returned, depending on the method but is always passed by reference.

code_a is the alphanumeric country code. It may be either furnished
or returned, depending on the method. The user is responsible for
supplying a string of adequate size for the method requested.

Results: In addition to the returned code, either the numeric value or the
string depending on the request, the program also returns the integer
location of the element in the array, thereby enabling the user to
retrieve the other values or attributes directly without having to do
further look-ups.

5.2.10.1 mj_gcn
Program 'mj_gcn' is used to retrieve a numeric country code given the two-

character ISO code. It is simply a shell that invokes the generic routine
'mj_getcg'.

Usage: iopstat = mj_gcn (code_a, &code_n)
where

code_a is the requested alphanumeric country code.
code_n is the returned numeric integer area code.

Results: In addition to the returned value the program also returns the
integer location of the element in the array, thereby enabling the user to
retrieve the other values or attributes directly without having to do
further look-ups.

5.2.10.2 mj_gc2
Program mj_gc2 is used to retrieve a two-character country code given the

numeric code. It is simply a shell that invokes the generic routine 'mj_getcg'.

Usage: iopstat = mj_gc2 (codejn, code_a)
where

code_n is the requested numeric integer area code.
code_a is the returned two-character alphanumeric country code.

Results: In addition to the returned value the program also returns the
integer location of the element in the array, thereby enabling the user to
retrieve the other values or attributes directly without having to do
further look-ups.

5.2.10.3 mj_gc3
Program 'mj_gc3' is used to retrieve a three-character country code given the

numeric code. It is simply a shell that invokes the generic routine 'mj_getcg'.

Usage: iopstat = mj_gc3 (code_n, code_a)
where

code_n is the requested numeric integer area code.

24

code_a is the returned three-character alphanumeric country code.
Results: In addition to the returned value the program also returns the

integer location of the element in the array, thereby enabling the user to
retrieve the other values or attributes directly without having to do
further look-ups.

5.2.10.4 mjgct
Program ,mj_gct' is used to retrieve a country identifier text given the

numeric code. It is simply a shell that invokes the generic routine 'mj_getcg'.

Usage: iopstat = mj_gct (code_n, code_a)
where

code_n is the requested numeric integer area code.
code_a is the returned alphanumeric text of the area/country.

Results: In addition to the returned value the program also returns the
integer location of the element in the array, thereby enabling the user to
retrieve the other values or attributes directly without having to do
further look-ups.

5.2.11 mj_gal.c
The routine 'mj_gal' is a C language program used to extract a list of line

segment identifiers associated with a specified area. NOTE: These will probably
not be in the order necessary to define a closed polygon and may include
segments in addition to those associated with the border.

Usage: iopstat = mj_gal (tec, nseg, aseglist)
where

tec is the integer numeric target country file identifier,
nseg is an integer array allocated for the numeric count of segments

returned in the list.
* on input element [0] specifies the maximum size of the provided
list array.

seglist is the integer array list of segments;
* Note that negative segment numbers indicate the segment is in
reverse order for the target country on right rule. A zero entry is
used as a break for countries that have separated multiple
components.

Results: The program returns a zero value for successful completion. The
value of the 'nseg' array will be positive, non-zero values for all
components returned.

5.2.12 mj_grl.c
'mj_grl' is a C language program that retrieves the line segment identifiers

of all segments whose range might overlap a specified rectangular range.
Segment ranges should be initialized in the 'mj_ilr' routine.

Usage: iopstat = mj_grl (range, &nseg, seg_id)
where

range is the vector of the form [lon_min lon_max lat_min lat_max]
used to specify a 'rectangular' region of interest,

nseg is, on input, the size of the 'seg_id' array being provided. On
return it will contain the number of segments in the array lseg_id'.

seg_id is the returned array that will contain the numeric line segment
identifiers. Note that while the range of line may fall within the
specified area, the line segment itself may not.

Results: The program returns a zero value for successful completion.

25

5.2.13 mj_gapl.c
'mj_gapl' is a C language program used to extract a list of ordered line

segment identifiers from the area definition file. Rather than try to store the
variable length lists internally, the program reads the user provided file.
This also allows the user to specify alternative areas.

Usage: iopstat = mj_gapl (area_def_file, tec, nseg, aseglist)
where

area_def_file is the area definition file identifier;
tec is the integer identifier of the target area/country;
nseg is an integer array in which will be stored the count of segments in

the list.
[0] = number of valid segments.
[1] = number of actual segments in a string, including breaks.
* on input element [0] specifies the maximum of the provided list
array.

aseglist is the integer array list of segments.
* Note that negative segment numbers indicate the segment is reverse
order for target country on right rule. A zero entry is used as a
break for countries that have separated multiple components.

Results: The program returns a status of zero for successful completion.

5.2.14 mj_gar.c
The routine 'mj_gar' is a C language program used to extract the rectangular

range of the country specified by the numeric country code. Note the values
will generally be in the range 0:360+ although minor overlaps may occur (such as
for countries along the Greenwich meridian) to maintain continuity). This
program uses the area range file as stored in array 'ARANGE'. The array could
have been read in from a user-generated file or computed in the initialization
routine ,mj_iar'. The column information stored from that process is as
follows:

country_code, lon_min, lon_max, lat_min, lat_max

Usage: iopstat = mj_gar (code_n, range)
where

code_n is the numeric area (country) code identifier,
range is a four-element array returned with the range of the requested

area as stored in the internal array.
Results: The program returns a status of zero for successful completion.

5.1.15 mj_gld.c
'mj_gld' is a utility program which retrieves the coordinates {longitude,

latitude} associated with the requested line segment identifier(s). The
coordinates are nominally in decimal degrees, though there is nothing to ensure
this other than how the data looks.

Usage: iopstat = mj_gld (seg_path, nseg, aseglist, &npnt, xp, yp)
where

seg_path is the path of the directory where line segment data is
located. The default file type ,ls****.seg' are set by the program,

nseg is the integer number of segments in 'aseglist' array being
provided,

aseglist is the integer array list of segments.
* A zero entry is used as a break for countries that have separated
multiple components.

npnt is the returned integer number of points in segments.
-1 indicates an array overflow condition (avoided).

26

* On input this is the size of the furnished polygon arrays.
xp is the returned type double array of longitudes, in decimal degrees,
yp is the returned type double array of latitudes, in decimal degrees.

Results: The program returns a status of zero for successful completion.

5.2.16 mj_gad.c
'mj_gad' is a C language program used to extract the data points from a

series of line segments in a specific order so as to define a closed polygon.
This version allows the user to specify their own area definition file rather
that hard-wire the default.

Usage: iopstat = mj_gad (aseg_fil, seg_path, tec, &npnt, xp, yp)
where

aseg_fil is the string identifying the file location of the area
definition file, nominally 'M^AREA' .

seg_path is the path of the directory where line segment data is
located. The default file type ,ls****.seg' are set by the program,

tec is the country area integer identifier,
npnt is the integer number of points returned in polygon.

* on input this is the size of the furnished polygon arrays.
xp is the returned type double array of longitudes, in decimal degrees,
yp is the returned type double array of latitudes, in decimal degrees.

Results: The program returns a status of zero for successful completion.

5.1.17 mj_gpra.c
'mj_gpra' is a C language program used to extract a list of countries (their

identifier actually) based on the requested point lying in the rectangular
range.

Usage: iopstat = mj_gpra (xy_pos, &ncr, code_n)
Where

xyjpos is a two element double array containing the longitude(0) and
latitude(1) in decimal degrees of the point being tested,

ncr is an integer variable into which is stored the number of
elements returned in the list array.
* On input this variable contains the size of the list array being
furnished.

code_n is an integer array of size 'ncr' that will contain the areas
that satisfy the general range search.

Results: The program returns a status of zero for successful completion.
»

5.2.18 mjgpca.c
The routine 'mj_gpca' is a C language program used to extract a list of

countries (their identifier actually) based on the requested point lying in the
MJ polygon.

Usage: iopstat = mj_gpca (xy_pos, &ncr, code_n)
where

xy_pos is a two element double array containing the longitude(0) and
latitude(1) decimal degrees of the point being tested,

ncr is an integer variable into which is stored the number of
elements returned in the list array. Under the current
implementation of the program this should always be the value one as
multiple possession disputes are noted with a message.
* On input this variable contains the size of the list array being
furnished.

27

code n is an integer array of size 'ncr' that will contain the areas
~ that satisfy the country range search. The current implementation

of the program should only return one value but the array must still
be furnished.

Results: The program returns a status of zero for successful completion.

5.2.19 mjgab.c
'mj gab' is a C language program used to extract a list of baseline segment

identifiers associated with a specified area. While the base points are
technically just points and are not consistently grouped to form continuous
lines, they have been grouped as found in the source document.

Usage: iopstat = mj_gab (tec, &nseg, aseglist)

where
tec is the integer identifier of the target area;
nseg is the integer count of segments returned in list;

* on input element [0] specifies the maximum size of the provided
list array.

aseglist is the returned integer array list of segments;
Results: The program returns a status of zero for successful completion.

5.2.20 mjgbd.c
'mj gbd' is a utility program which retrieves the coordinates {longitude,

latitude} of the base points associated with the requested baseline
identifier(s).

Usage: iopstat = mj_gbd (seg_path, nseg, aseglist, fcnpnt, xp, yp)

where
seg_jpath is the path of the directory where baseline segment data is

located. The default file type 'bl****.bas' are set by the program,
nseg is the integer number of segments in 'aseglist' array being

provided,
aseglist is the integer array list of segments,
npnt is the returned integer number of points in segments.

-1 indicates an array overflow condition (avoided).
* On input this is the size of the furnished polygon arrays.

xp is the returned type double array of longitudes, in decimal degrees,
yp is the returned type double array of latitudes, in decimal degrees.

Results: The program returns a status of zero for successful completion.

5.2.21 mj_pip.c
The utility routine 'mjjpip' is a C language program used to test if a point

is in a polygon. The method used here is based on an Algorithm in Glassner's
"Graphics Gems", and Joseph O'Rourke's (Smith College) interpretation thereof,
with a couple of modifications. Note, the original points in the polygon are
destroyed. It is not necessary that the polygon is closed but if it is not the
end points will be connected.

Usage: iopstat = mj_pip (xy_pos, nvrt, Px, Py)
where

xy_pos is a two element double array containing the longitude(0) and
latitude(1) in decimal degrees of the point being tested,

nvrt is an integer value specifying the number of points in the arrays
being passed for the polygon coordinates.

Px is the type double array of longitude coordinates defining the
polygon to be tested.

28

Py is the type double array of latitude coordinates defining the
polygon to be tested.

Results: The integer status is returned a value of one (1) if the point is in
the polygon, zero otherwise.

29

5.3 Test programs
The test programs are written in the C language and exercise the components

of the utility software. The also illustrate the manner in which some of the
initialization routine are used and how the parameter list are passed to the
various functions.

The purpose of each test program is summarized in Appendix 0. A brief
explanation and example is also provided if the program is invoked without any
arguments. For example,

mjt_01.exe or mjt_02.exe
The tests are neither exhaustive nor foolproof, merely some examples.

5.4 Application prototypes, conversion programs
As an extension of the test programs some routines were developed which allow

the porting of the MJDB data to other analysis and/or display systems. These
are written in the C language and make use of the software utilities described
in an earlier section. The programs are described briefly in the sections that
follow.

5.4.1 mj a_gxy.c
This program is an extension of the border retrieval by area code test. Here

the coordinates are retrieved then output in an ASCII list format compatible
with the Generic Mapping Tool (gmt) software package. In the normal mode of
operation the file identifier is formed using the two-character area identifier
as the root filename. The optional second argument allows the user to put
everything in a single multi-segment file with identifier 'MJJSMT.gxy' segment.
The segment comprising each area will be separated by the gmt default multi-
segment separator, the v >' record.

Usage: mja_gxy.exe area_code_n [multi]
Results: The files contain one record per {longitude latitude} coordinate

pair. The single area files might also be used with any software, such as
Matlab or Surfer, that accepts list input.

5.4.2 mjamsg.c
The 'mja_msg' program is used to extract the border polygon for an area and

create {count latitude longitude} coordinate records in message format files.
The file created is suitable for use with various software packages but was
developed specifically for those products such as *msg2vec' which use the
message format. This version of the program only processes one area per message
file. It also differs from the GMT format version in that the user can specify
the segment file path.

Usage: mja_msg.exe seg_file_path area_code_n
Results: The program creates one file, using the two-character area code as

the root file identifier, for each area requested.

5.4.3 mja_vpf.c
The ,mja_vpf program extracts border coordinates for an area and creates

Vector Product Format (VPF) LINE files. Like the message format converter
the user can specify the segment file path. The two-character area code is used
to form the root file identifier and only one file is created per area request.
The resulting file can be read directly into the DMAMUSE product distributed by
NIMA and used at NAVOCEANO. There is a lot of header information in the file.
As this is output before the coordinate data it is imperative that the node

30

count and area ranges, as stored in the lMJ_LINED' and 'MJ_ARNG' files, be
accurate.

Usage: mja_vpf.exe seg_file_path area_code_n
Results: The current version of the program generates the LINE format.

Extensions could be made to generate some of the other forms of the data.
A complete description of the Vector Product Format is contained in the
Department of Defense 'Interface Standard for Vector Product Format'; the
document is available from a number of sources on the World Wide Web.

5.4.4 mjalshp.c
Program 'mja_lshp' is used to extract line segments and create files in the

ESRI 'shapefile' format. A 'shapefile' has become something of a de facto
standard for transporting geographic information in and out of various software
packages. The data can be imported directly into a package such as ESRI's
'ARCVIEW' as well as several other GIS packages. The files, and there are three
of them to keep track of, are not visually readable ASCII but rather are icky
machine independent binary.
As mentioned, there are three types of files associated with the 'shapefile'.
The file extensions are considered inviolate.

a) master data file, .shp
b) index file, .shx
c) dBASE file, .dbf

And now a list of caveats:
This is an example of how to create lshapefiles' from the data. It makes no
claims for being completely general purpose or even the best way of doing it.
It is meant to be a simple and understandable illustration of how it can be
done.

There are a couple of ways of going about this. The main problem is a
'shapefile' requires a prior knowledge of how many records and bytes are going
to be in it. (Either that or direct access/keyed writes, which are not machine
independent.) So we assemble a list the first pass. Again, this could use
memory allocation and all that wonderful C language stuff but there are only a
limited number of segments anyway. Finally, we could use the 'mj_gld' function
and get the actual number of points. Or if one feels that would take too long
we could get the information from the VMJ_LINED' record, but that also would
require some search. I've opted for the slow method as it allows me to do some
range checking and make sure it looks like I will eventually see it in ArcView.

This is written primarily for the PC based machine. Or more correctly the
endian conversion routines are currently set up for running from a PC. This
implementation is used to pass the line segments into the file. The attributes
that go into the database portion are completely arbitrary but I've chosen to at
least carry along the topological information concerning the right- and left-
hand area codes.

Usage: mja_lshp.exe seg_file_path line_code_n
Results: Because almost any combination of line segments could be requested

the file identifiers are hard-wired to the following:
MJ_LS.dbf
MJ_LS.shx
MJ_LS.shp

5.4.5 mja_pshp.c
Another conversion program, 'mja_pshp', is used to extract a border for an

area and create ESRI 'shapefiles' for the polygon and 'midpoint. Whereas the
program ,mja_lshp' extracted line segments, this application extracts the border

31

polygon. The two-character area/country identifier is used to form the root of
the file identifier; it is appended with the character (p' for the point
'shapefile' and 'a' for the polygon 'shapefile'. The location of the point in
the point-type 'shapefile' is the computed midpoint of the area. In most cases
this should lie within the outlined area but there is no guarantee.

There are three types of files associated with the 'shapefile'. The file
extensions are considered inviolate.

a) master data file, .shp
b) index file, .shx
c) dBASE file, .dbf

If one does one country per file then name can be used. However, the definition
allows multiple polygon 'shapes' in a file. So what do we call this. It may be
a mute point as the 'shapefile' is not topological and will duplicate any common
lines. I am therefore going with one country per area, or one file per area if
one chooses to think of it in that manner. It should be easy enough (famous
last words) to extend it if multiple areas must be put in the same file. It
could get huge. The list of caveats in the earlier line-style 'shapefile'
discussion applies here as well.

Usage: mja_pshp.exe seg_file_path area_code_n
Results: The program produces six files using the two-character area/country

code as the root of the file identifier. They are of course binary.

32

6.0 Documentation
This document is the primary source of documentation for this phase of the

project. It has been placed in the 'DOC subdirectory in both Microsoft Word 97
and ASCII text formats. Supporting figures showing the boundaries were not
included in the MJDB documentation for portability reasons, but have been placed
in the DOC subdirectory. The files were generated with the GMT program and are
stored in the PostScript language. The support software has descriptions and
comments embedded in the code.

33

7.0 Discussion and comments
This section is a catchall for everything that did not logically fit in some

other section of the documentation. It could just as easily been put in the
form of questions and answers except some of the issues do not really have
answers.

Reliability of the line segments
I hope the disclaimer made it clear this is not the last word on the Marine

Jurisdictional boundaries. First, the defining of boundaries is an on-going
process, both between established nations and arising as new nations are formed.
Second, even if neighboring parties agree on a boundary, the rest of the world
may not accept it. Finally, there seems to be a lack of written material for
many of the boundaries.

Most of the line segments were used in preparation of the Ross/Fenwick Marine
Jurisdictions Chart and represented the boundaries as best determined at that
time. It was more than adequate for the scale of the chart on which it was
displayed. In using and updating that data set, and looking at the finer points
of the topological relationships, it became clear that there were many areas
where it was difficult to determine where the boundaries really were located.
This release represents the best effort to resolve the inconsistencies with the
data available.

Line segment data accuracy
If this were a question it would be a trick question. Strictly speaking,

there are three properties of the data: accuracy, precision and resolution.
The subject of accuracy was actually touched on in the previous section under
reliability. How well does the data represent reality?. For the majority of the
lines the location is not only not well documented but the digitization process
has been shown to have missed known points by anywhere from 100 to 1000 meters.
The coordinates of points along a boundary have been stored to 0.000001 degrees.
At the equator this corresponds to about 0.1 meters, which should be enough
precision for most applications. The resolution of most current treaties seems
to be about 0.1 minutes (-200 meters). The result of all this is the database
can adequately record the boundaries when they are available.

Line segment data volume
The line segments probably contain way too much data. As stated, they were

probably digitized from some source chart and the coordinates were recorded
about every 1000 meters. Where boundaries have been defined as a straight line
connecting two widely separated points this appears to be a clear case of over
kill. The condition is also apparent for the 200 nm. limit of islands in the
open ocean; there are a lot of point in the line segment. Yet one should not
be too hasty in decimating the coordinates defining a line segment. First, one
has to be careful not to throw away a corner or a defined point. Perhaps more
importantly, resulting long, unconstrained, 'straight' boundary lines can assume
some decidedly inaccurate shapes and positions on different map projections.
After taking all this into account, the data has been retained as recorded for
the originally digitized data set. Where the boundary has been defined by a set
of discreet points only those points have been recorded and no intermediary
points are included.

Some of the long, open ocean arcs, such as most often found in the Pacific,
have been trimmed to provide a better junction with a treaty-defined line. At
some point the arcs need to be recomputed. The island 'basepoints', either
actual or implied by the arc, are in most cases unknown.

Boundary definitions

34

Almost all the explicit boundary data has come from the DoD document. While
this seems to be the best current source by far it needs to be used with some
care. There are more than a few errors, inconsistencies and unclear passages.
In some cases it is a matter of stating different values in different sections.
This may be a case of disagreement by two parties but in the case of treaty
agreements seems more likely a misprint. There are errors of sign and
hemisphere. In most cases the errors, when not immediately obvious, become
apparent when viewed on a chart.

As stated earlier, even with the DoD document, considerably less than half
the countries have boundaries attributable to a source document. It seems like
somebody must be keeping track of all this. The United Nations would seem like
a logical candidate. Contact was made with the office and persons given below.

Division for Ocean Affairs and the Law of the Sea
Office of Legal Affairs
United nations
Two United Nations Plaza
Room 0472
New York, NY 10 017
Mr. Vladimir Jares

jares@un.org
212/963-3943

Mr. Antonio Escudero
212/9S3-3948

They have plans, wonderful plans. The will not only store all the boundary
data, baseline data and treaties but also keep it current and perhaps even
accessible. But it seems to be still just a plan.

Conflicting border claims
As stated earlier, the process of achieving universal, or at least global,

acceptance of all boundaries seems likely to be fulfilled. In the large middle
ground are the boundaries that may not be official but are at least observed.
There are a few boundaries, the parties to which are openly contentious to a
lesser or greater degree. The data base allows the border segments to be
connected in any fashion so if you do not think they boundaries are correct, or
they change, simply redefine the border. Some of the areas that have unsettled
or conflicting claims are listed below. These are not meant to be recognition
of claims, merely an indication that a conflict does exist.

Argentina / Great Britain (Falklands)
Bahamas / United States of America
British Ocean Territories / Maldives
China / Taiwan and other neighbors
Haiti / United States of America (Navassa)
Japan / Russia
Namibia / South Africa
North Korea / neighbors
Philippines / neighbors
Vanuatu / neighbors
Vietnam / neighbors

Missing boundaries and territorial waters
For all practical purposes the boundaries for areas such as the Mediterranean

Sea, Baltic Sea, Red Sea, Black Sea and Persian Gulf should be considered as
non-existent. They have been carried along where available but they are far
from complete. In many cases these claims fall under the more appropriate
classification of territorial seas and while they might be considered a subset
of the more general Exclusive Economic Zone, they have not been specifically
addressed in this project.

35

Another particularly difficult area is the South China Sea and any border
coming anywhere near China. This includes the interpretation of the Philippine
boundary. This is primarily an issue of lack of data. In the current version
of the data set the boundaries again fall into the category of 'best
interpretation based on existing evidence'.

NIMA port data
As discussed in another section a subset of the NIMA World Port Index

has been provided with the data. Errors have been discovered in the current
NIMA release. Some of the more notable errors, such as the wrong hemisphere,
have been corrected. There may be other errors so use the product with care.

Polygons and closure
In cases like isolated islands it is pretty straightforward to define a

closed polygon for the area of the maritime claims. When displayed and then
overlain with the land everything looks great. Even for large areas such as the
United States of America and Russia it is possible to construct the lines
segments comprising the border into a polygon such that the superimposition of
the landmass masks the large 'gaps' in the maritime border. Sadly, there are a
few countries where these assumptions either do not work or look really bad when
displayed. The countries of Argentina and Angola come to mind; there are
others. To generate at least a nice looking map some of the territorial
boundaries on land were incorporated into the polygon definition. They follow
the same rules as all the other line segments. These special segments are
numbered with the identifiers beginning at 951. They may be overkill for some
users needs, not enough for others. The assumption regarding the closure by
connecting of end points is not merely cosmetic however. It is also implicit in
the point in polygon searches. A bad approximation to the coast can result in a
'hole' between the boundary and the coast of the country. This is not good. It
should be equally obvious, but will be stated anyway: with the current database
the point in polygon search will be inaccurate for points on land.

Updating the database
In view of the fact there is not yet a central facility to maintain the

database users may want to do their own updates, interpretations or
modifications. The follow paragraphs contain some methodology for performing
various types of updates.

Replacing a line with a new line: Suppose one wishes to decimate the number
of coordinates in a line. Or perhaps needs to add some coordinates to achieve a
better representation. An uncertain line might also be replaced with a new line
define by treaty. At any rate, assuming the line is bounded only by the same
two areas/countries check to ensure the topology of the area codes. If the line
is going in the opposite direction the order of the codes will be reversed.
Check to make sure the end points of the new line segment match those in the
segment being replaced. Or more correctly make sure the endpoints correspond to
the junction with segments at either end of the new segment. (The junction may
have been an indeterminate point and now need updating in several files.)
Update the line segment file's descriptor record field containing the number of
points. Be sure to note in the appropriate fields the source of the information
and any comments. The file is replacing an existing file of the same name, as
determined by the line identifier, so not much more has to be done there. If
the direction of the line has been reversed, the area border definition file
('MJ_AREA') must be modified. There will be two countries affected and the
entries for the line segment identifiers must have the signs reversed. The
positive will become a negative and vice versa. Two other less critical files
might also need updating. The line definition file ('MJ_LINED') should be
updated so the line being updated has record information matching that on the

36

file descriptor record. The line range file ('MJ_LRNG') should also be updated
to reflect the new longitude and latitude range of the file. These files may be
either edited or recreated using the utility program 'mj^lr.c'. Finally the
area ranges for the two affected countries may have changed. Again this file is
not critical, especially if the changes have been small, and the file 'MJ_ARNG'
may be either edited or recreated using the utility program 'mj_car'.

Creating a new line segment: There are a couple of reasons a new line segment
may be needed. New data may become available defining a border not previously
included in the database. This would include the formation of a new country.
Or new coordinates might become known along part of existing boundary and
splitting the current segment into two parts would best incorporate these
changes. The first step is to determine a new identification number for the
line segment. The best procedure is to fill in the holes but most obviously
choose one not already in use. Form the file identifier and create the file in
the ^EGS' subdirectory. The format of the file is described in an appendix but
it is just as easy to use an existing file as a template. The next steps are
similar to those described in the preceding discussion so are just summarized
here.

1) Ensure the internal line segment identifiers match that used for the file.
2) Determine direction of the line and appropriate area identifiers from the

area code definition file (xMJ_CNTRY').
3) Enter left and right area codes; the fields on the descriptor record are

mandatory.
4) Specify the number of coordinate points in the file.
5) Fill in the source and other fields on the descriptor record as

appropriate.
6) Include the points in the file, longitude and latitude decimal degrees.
7) Update the area border definition file ('Mi^AREA') ■ Locate the

identifiers of the two segments that the new segment will connect and
insert the new identifier in the stream. Make sure the sign is correct
for keeping the target country on the right. Remember, usually two areas
will need to be updated and there is only one definition record per area.
If the border is with the open ocean or a country not in the database then
only one area may need updates. If this is an entirely new country make
sure to include any additional fields of information as described in an
appendix or use one of the other areas as a template. The is not other
way of maintaining the area border definition file.

8) Update the line segment range file 'M^LRNG' . This is more important when
a new segment is being defined. The file may be either edited or
recreated with the program 'mj^lr.c'.

9) Update the line segment description file 'MJ_IJINED' . This is more
important when a new segment is being defined. The file may be either
edited or recreated with the program 'nr^clr.c'.

10) Update the area range file 'MJ_ARNG'. The file may be either edited
or recreated with the program 'mj^ar.c'.

If an existing segment is being split into two, or more, parts the above process
may need to be repeated several times. Make sure the coordinates at the end of
the new segment agree with those at the junction with adjacent segments within
the tolerance desired.

Software compatibility
The various software modules were developed using some pretty old hardware,

operating systems and vendor software. It should be upward compatible without
too many changes being required. That is not to say that some changes might not
make things a lot more efficient. For instance, there are many new features in
the Matlab 5.0 release that either replaces obsolete functions used here or

37

greatly simplify things. Similarly for the functionality employed in the C
language programs. The guiding principle was, if I had old tools some other
user would probably have something even older. Until the applications and
operational requirements become more specific everything was kept as simple and
portable as possible.

Future developments
To go beyond the statement in the disclaimer, the initial version of the

product is probably the best available at the time of its release. It is quite
probably the only version. As it gets out in the public domain there will
undoubtedly be modifications, not only to the access, analysis and display
software, which is to be wholeheartedly encouraged, but also to the form and
content of the boundary data itself. This raises issues of long term
maintenance and a central source or repository of information. On the distant
horizon the United Nations appears to be willing to assume this role. It was
not clear in my conversations with personnel there if the current charge
included unrestricted public access to the information. Major GIS vendors may
also have financial interests in distributing a maritime boundaries product for
customers in a number of fields. The intention is that this product can fill
the immediate need for a database of maritime boundaries and serve as a starting
point for future developments in the area. But some thought and planning should
be given to the direction of that development starting now.

38

Acknowledgments
The impetus for this project was provided by RADM Richard Pittenger, USN

(Ret.), Associate Director for Marine Operations at the Woods Hole Oceanographic
Institution (WHOI), who gathered the various interested parties together and
provided the necessary WHOI support. Ms. Emma Dieter, Program Manager for Ship
Operations at the National Science Foundation helped provide funding through the
Office of Naval Research contract #N00014-98-l-0276. CDR James Trees,
Operations Officer at the Naval Oceanographic Office (NAVOCEANO), provided not
only manpower and material support, but also the operational need for the
product. QM Glenn Paul spent a number of days providing some insight into the
operations at NAVOCEANO and outlining the role a marine jurisdictions database
should play. Additional thanks go to Dr. David Ross/WHOI and Ms. Judith
Fenwick/WHOI, the authors of the original Maritime Claims chart on which this
project was based, for their continuing interest and assistance.
Acknowledgement is also given to the National Imagery and Mapping Agency, a
subset of whose World Port Index is included with the database for added
functionality.

39

References
DoD 2005.1-M, 'Maritime Claims Reference Manual' (electronic version),

Department of Defense, Washington, D.C., Jan 1997.

DoD MIL-STD-2407, 'Interface Standard for Vector Product Format', Department of
Defense, Washington D.C., 27 April 1996.

ESRI White Paper, 'ESRI Shapefile Technical Description', Environmental Systems
Research Institute, Redlands, CA, May 1997.

Glassner, Andrew S., 'Graphics Gems', Academic Press, San Diego, CA, 1990.

Fenwick, Judith, 'International Profiles on Marine Scientific Research', WHOI
Sea Grant Program, Woods Hole Oceanographic Institution, Woods hole, MA,
1992.

National Imagery and Mapping Agency, 'World Port Index', Marine Navigation
Department, Washington, D.C., 1998.

Ross, Dr. David A. and J. Fenwick, 'Maritime Claims and Marine Scientific
Research Jurisdiction', WHOI Sea Grant Program, Woods Hole Oceanographic
Institution, Woods Hole, MA, 1992.

40

Appendix A: Line segment file format
Record type #1: Optional comment record.

Note: The column delineation is primarily for editing and verification. All
processing operations are expected to operate on fields which are blank
separated. The '#' first character is all that is required to identify
the record as a comment. The rest can be anything the user wants; what is
specified here is just the convention adopted for the first stage of this
project.

001:001 Hash character '#' indicating optional comment record.
002:007 Integer line identifier, leading zero-filled.
010:012 Integer data source identifier. [See Table I: Data source.]
015:end Optional comments. The contents of this field may be almost

anything. However, in this implementation I have chosen to start the
field with mnemonic 'll|rr', where '11' is the two character code of the
country to the left moving along the line. 'rr' is the code of the
country to the right.

Record type #2: Line descriptor
Note: The column delineation is primarily for editing and verification. All

processing operations are expected to operate on fields which are blank
separated.

001:001 Character 'D' indicating descriptor record.
002:007 Integer line identifier, leading zero-filled.
009:013 Integer line-type identifier. [See Table II: Line type codes.]
016:020 Integer depth of line feature. This field really is not used in the

current implementation so it is usually 0. It was defined nominally as
depth to allow flexibility for some attribute assignment at a later time.

023:026 Integer left side area identifier.
028:031 Integer right side area identifier.
033:036 Integer number of coordinates in line feature.
040:040 Integer display code; 0=do not display line. This is another field

not completely utilized. The intent is that some segments, such as
closing land boundaries, are part of the border but should not be
displayed as such. A value of 1 or some other non-zero value could be
used as an additional line attribute.

Record type #3: Line feature coordinates blank separated {longitude latitude}
coordinate pairs, one pair per record.

Example:
#000001 001 AU|NC
D000001 00061 00000 0036 0540 0407
158.531799 -25.065601

Table X: Data sources.
001 Data from LOTS tape
002 Missing segment constructed from 001
003 USA/Russia Maritime Agreement 01 Jun 1990 'LOS Bulletin #17 pp. 15-21'
004 WDBII via gmt extraction
005 Fr. Rep. (New Caledonia)/Solomon Islands 'LOS Bull. 18 & 19 w/corr'

41

006 DoD 2005.1-M, "Maritime Claims Reference Manual (electronic version),
Department of Defense, Washington, D.C., Jan 1997.

007 "Times Atlas of the World, Comprehensive Edition", New York Times Book
Co., New York, N. Y., 1980.

008 "Columbia Lippincott Gazetteer of the World", Columbia University Press,
Morningside Heights, N. Y. 1961.

009 Electronic Mail, CDR. James Trees, NAVOCEANO, 15 May 1998.

Table II: Line type codes
The line type codes are an extension of those supplied with the digitized

data set of source [1]. There is some indication that these originally came
from the World Data Bank II (WDB-II) ranking guide, which apparently had a Law
of the Sea Data Bank as a subset. The actual source is unknown however, as is
the method of categorization of the original data set. The following rank codes
were either used or added for this project.

Law of the Sea Data Bank
01 International boundary (added for this project)
08 Baseline points (added for this project)
31 200 nautical mile limit
41 Agreed upon territorial sea boundary
42 Agreed upon continental shelf boundary
43 Agreed upon maritime boundary
61 Hypothetical lines to 200 nautical miles
81 Joint development zone
84 Joint fishing zone
85 Joint protected zone
91 Exclusive Economic Zone
92 Straight lines
93 New US-Canada line
94 Fishery conservation zone

42

Appendix B: MJ_CNTRY file format

Record type #1 Area code definitions.
Note: The column delineation is primarily for editing and verification. All

processing operations are expected to operate on fields which are blank
separated.

001:005 Right justified or leading zero-filled integer area code.
007:008 ISO-3166 two-character area code.
010:012 Three-character area code.
014:083 Full country identification. Actually, this can be whatever you

like. In most cases this seems to be the official name. It could be
changed to the popular name or to use lower case. There is no specific
limit to how much you put on the record but the support software currently
allows a maximum of 69 characters.

Example:
24 AO AGO ANGOLA
3 6 AU AUS AUSTRALIA

1518 M4 M04 MACQUARIE ISLAND (AUSTRALIA)

43

Appendix C: MJ_LRNG file format
Record type #1 Line ranges.

Note: The column delineation is primarily for editing and verification. All
processing operations are expected to operate on fields which are blank
separated.

001:004 Right justified or zero-filled integer line segment identifier.
006:016 Minimum longitude of points in the line segment.
018:028 Maximum longitude of points in the line segment.
030:039 Minimum latitude of points in the line segment.
040:049 Maximum latitude of points in the line segment.

Example:
0002 160.442322 164.880402 -55.247501 -51.114498
0003 168.779007 171.120697 -32.300598 -30.948101
0004 287.187202 289.456093 21.897001 25.038301

44

Appendix D: MJ_LINED file format

Record type #1: Line descriptor
Note: The column delineation is primarily for editing and verification. All

processing operations are expected to operate on fields which are blank
separated.

001:001 Character 'D' indicating descriptor record.
002:007 Integer line identifier, leading zero-filled.
009:013 Integer line-type identifier. [See. Table II: Line type codes.]
016:02 0 Integer depth of line feature. This field really is not used in the

current implementation so it is usually 0. It was defined nominally as
depth to allow flexibility for some attribute assignment at a later time.

023:026 Integer left side area identifier. This is the area (country) code
as defined in the file MJ_CNTRY.

028:031 Integer right side area identifier. This is the area (country) code
as defined in the file MJ_CNTRY.

033:036 Integer number of coordinates in line feature.
040:040 Integer display code; 0=do not display line. This is another field

not completely utilized. The intent is that some segments, such as
closing land boundaries, are part of the border but should not be
displayed as such. A value of 1 or some other non-zero value could be
used as an additional line attribute.

Example:
D000002 00061 00000 0554 1518 0277 1
D000003 00061 00000 0554 0574 0095 1
D000004 00061 00000 0796 0044 0108 1

45

Appendix E: MJ_AREA file format

Record type #1: Optional comment record. The record is primarily an aid to
expedite the identification of an area. They may appear anywhere in the
file but obviously are most useful if tied to and located somewhere in the
vicinity of the boundary definition record.

Note: The column delineation is primarily for editing and verification. All
processing operations are expected to operate on fields which are blank
separated. The '#' first character is all that is required to identify
the record as a comment. The rest can be anything the user wants; what is
specified here is just the convention adopted for the first stage of this
project.

001:001 Hash character *#' indicating optional comment record.
002:007 Integer line identifier, leading zero-filled.
010:011 Two-character area (country) code. The codes are defined by the

ISO-3166 standard and are contained in the file 'MJ_CNTRY'.

Record type #2: jurisdictional limit boundary definition.
Note: The column delineation is primarily for editing and verification. All

processing operations are expected to operate on fields which are blank
separated. This record is as long as necessary and must not be broken
into multiple records.

001:001 Character 'A' indicating area definition record.
002:007 Integer line identifier, leading zero-filled.
009:013 Integer area type identifier. [See Table II: Line type codes.]

This field is meant to allow some type of description for the type of area
being defined. As such it is probably a function of the type of line
segments used to construct the area. That is the long-term plan anyway;
it has not been rigorously implemented in this version of the project.

016:020 Integer attribute of line feature. This field really is not used in
the current implementation so it is usually 0. It was defined nominally
as depth or time to allow flexibility for some attribute assignment at a
later time.

022:026 Integer line-segment identifier of the first segment in the border.
The convention defines the associated area to the right as one moves from
the first to subsequent points of the line segment. A negative value is
used to indicate that one must travel 'backward' along the line.

028:032 Integer line-segment identifier of the next section of the border.
The sense of the line is continually defined so the associated area is on
the right.

List as many segment identifiers as needed to describe the border.

Example:
#001509 A6
A001509 00061 00000 0692 0687 0688
#001517 A7
A001517 00061 00000 -0385 -0313 0312 0311 0757 0758
#001526 A8
A001526 00061 00000 0741

46

Appendix F: MJ_ARNG file format
Record type #1 Area ranges.

Note: The column delineation is primarily for editing and verification. All
processing operations are expected to operate on fields which are blank
separated.

001:004 Right justified or zero-filled integer area identifier.
0 06:016 Minimum longitude of points in the area border.
018:028 Maximum longitude of points in the area border.
030:039 Minimum latitude of points in the area border.
040:049 Maximum latitude of points in the area border.

Example:
1509 324.466095 339.133900 33.547802 43.032204
1517 88.788101 95.696205 4.021400 15.767200
1526 342.266899 348.998000 -11.284200 -4.618300

47

Appendix G: Base point file format
Record type #1: Optional comment record.

Note: The column delineation is primarily for editing and verification. All
processing operations are expected to operate on fields which are blank
separated. The *#' first character is all that is required to identify
the record as a comment. The rest can be anything the user wants; what is
specified here is just the convention adopted for the first stage of this
project.

001:001 Hash character ' #' indicating optional comment record.
002:007 Integer line identifier, leading zero-filled.
010:012 Integer data source identifier. [See Table I: Data source.]
015:end Optional comments. The contents of this field may be almost

anything. However, in this implementation I have chosen to start the
field with the area topology as define for the line segment. As these are
internal to the country the area identifier should be the same for both
fields.

Record type #2: Baseline descriptor
Note: The column delineation is primarily for editing and verification. All

processing operations are expected to operate on fields which are blank
separated.

001:001 Character XB' indicating descriptor record.
002:007 Integer line identifier, leading zero-filled.
009:013 Integer line-type identifier. [See Table II: Line type codes.]

This field could be better used to define the type of baseline. As it is,
the data entered thus far does not mean much.

016:020 Integer depth of line feature. This field really is not used in the
current implementation so it is usually 0. It was defined nominally as
depth to allow flexibility for some attribute assignment at a later time.

023:026 Integer left side area identifier. This field should always contain
the area code for the selected country.

028:031 Integer right side area identifier. This code should match the
previous field.

033:036 Integer number of coordinates in baseline feature.
040:040 Integer display code; 0=do not display line. This is another field

not completely utilized. This field has been set to a value of zero for
the base points.

Record type #3: Base point coordinates blank separated {longitude latitude}
coordinate pairs, one pair per record.

Example:
#000055 006 FJ|FJ Archipelagic baselines
B000055 00008 00000 0242 0242 0034 0
180.856667 -16.091667 1
181.068333 -16.746667 2

Appendix H: MJ_BRNG file format

48

Record type #1 Base point ranges.
Note: The column delineation is primarily for editing and verification. All

processing operations are expected to operate on fields which are blank
separated.

001:004 Right justified or zero-filled integer baseline identifier.
006:016 Minimum longitude of base points in the file.
018:028 Maximum longitude of base points in the file.
030:039 Minimum latitude of base points in the file.
040:049 Maximum latitude of base points in the file.

Example:
0001 357.832778 368.641667 35.078889 37.096667
0002 11.672222 13.370833 -16.544167 -8.583333
0003 301.749722 304.133333 -35.633333 -34.200000

49

Appendix I: MJ_LINEB file format

Record type #1: Baseline descriptor
Note: The column delineation is primarily for editing and verification. All

processing operations are expected to operate on fields which are blank
separated.

001:001 Character lB' indicating descriptor record.
002:007 Integer baseline identifier, leading zero-filled.
009:013 Integer line-type identifier. In the current implementation this

value has been set to a generic baseline indicator.
016:020 Integer attribute of baseline feature. This field really is not

used in the current implementation so it is usually 0. It was defined
nominally as depth to allow flexibility for some attribute assignment at a
later time.

023:026 Integer left side area identifier. This is the area (country) code
as defined in the file MJ_CNTRY.

028:031 Integer right side area identifier. This is the area (country) code
as defined in the file MJ_CNTRY.

033:036 Integer number of coordinates in line feature.
040:040 Integer display code; 0=do not display line. This is another field

not completely utilized. The intent is that some segments, such as
closing land boundaries, are part of the border but should not be
displayed as such. A value of 1 or some other non-zero value could be
used as an additional line attribute.

Example:
B000001 00008 00000 0012 0012 0076 0
B000002 00008 00000 0024 0024 0008 0
B000003 00008 00000 0032 0032 0015 0

50

Appendix J: MJ_ATTR file format
Record type #1: Area attributes
Note: The format, while nominally column aligned, should be treated as blank

separated fields.

001:005 Integer numeric country/area code.
007:008 Two character ISO country codes. These should not meant to be used

from this file; they are included to facilitate reference.
010:010 The opening bracket indicates the first (and at this point only)

attribute, the color component associated with the area. The normalized
RGB triplet follows this field indicator. The brackets {'[]') are used to
enclose the color attribute values.

xamp Le:
1010 A0 [0 00 1 00 1 00]
1011 Al [0 00 1 00 1 00]
1012 A2 [0 00 1 00 1 00]
1013 A3 [0 00 1 00 1 00]

20 AD [1 00 1 00 1 00]
784 AE [1 00 1 00 1 00]

51

Appendix K: MJ_LOC file format
Record type #1 Point of interest location records.

Note: The column delineation is primarily for editing and verification. All
processing operations are expected to operate on fields which are blank
separated.

001:011 Longitude of point, in decimal degrees.
013:022 Latitude of point, in decimal degrees.
024:027 Right justified or leading zero-filled integer area code.
029:030 ISO-3166 two-character area code.
032:083 Full point identification. Actually, this can be whatever you like.

In most cases this seems to be the official name. It could be changed to
the popular name or to use lower case.

Example:
1.500000 42.500000 0020 AD ANDORRA

53.000000 25.533333 0784 AE ABU AL BU KHOOSH
54.383333 24.533333 0784 AE ABU DHABI

52

Appendix L: Summary of Matlab routines
Contents
% mj_gab get area (country) baseline identifiers.
% mj_gac get area (country) code.
% mj_gad get area (country) data.
% mj_gal get area (country) lines.
% mj_gapl get area border (segment_identifiers).
% mj_gar get area (country) range.
% mj_gbd get baseline data.
% mj gen get area (country) numeric code identifier.
% mj~gc2 get area (country) two character identifier.
% mj~gc3 get area (country) three character identifier.
% mj~gct Get area (country) text.
% mj_gld get line data.
% mj_gpca get (country) area of point.
% mj_grl get range lines.
% mj_iaa initialize area (country) attributes.
% mj_iac initialize area (country) codes.
% mj_iar get area (country) ranges.
% mj_ilr initialize line ranges.
% mj_ina determine if point is in area polygon (utility)
% mj_init initialize default file locations, etc.

%

%

53

Appendix M: Example using some of the Matlab functions stored in the MFILES
subdirectory

% This example assumes a Unix environment and
% operating in the parent MJDB directory.

% Add the MFILE location to the path.
PATH = path;
path ('./MFILES', PATH);

% Initialize with the default environment.

mj_init
mj_iac
mj_ilr
mj_iar
pause

% Get the area identifier of Norway,
kid = mj_gcn ('NO')

% Verify to make sure this is the right area.
mj_gct (kid)
pause

% Get all line associated with the country.
kseg = mj_gal ('MJ_LINED', kid)
pause

% Get the line segments and plot them,
[xd, yd] = mj_gld ('SEGS/', kseg, 2);
pause

% Get the ordered border and plot it.
[xd, yd] = mj_gad ('MJ_AREA', kid, 2) ;
pause

% Get the base points and add them to the plot.
kseg2 = mj_gab ('MJ_LINEB\ kid);
[xd2, yd2] = mj_gbd ('BASE/', kseg2, -2);
pause

% Get range of Norway,
range = mj_gar (kid)
pause

% Now expand range slightly and get all lines
% in the area.

kseg3 = mj_grl ([range(l)-5 range(2)+5 range(3)-5 range(4)+5])
[xd3, yd3] = mj_gld ('SEGS/1, kseg3, -1);
pause

54

Appendix N:
mj_clr.c
mj_car.c
mj_cbr.c
mj_init.c
mj_iac.c
mj_ilr.c
mj_ibr.c
mj_iar.c
mj_iaa.c
mj_getcg.c
mj_gcn
mj_gc2
mj_gc3
mj_gct
mj_gal.c
mj_grl.c
mj_gapl. c
mj_gar.c
mj_gld.c
mj_gad.c
mj_gpra
mj_gpca
mj _gab.c
mj _gbd.c
mj_pip.c
mj_incl.h

Summary of C language utility software
create line range files MJ_LRNG, MJ_LINED from ls****.seg files.
extract line segments for countries and create file MJ_ARNG.
create line range files MJ_BRNG, MJ_LINEB from bl****.bas files.
performs the initialization of various paths and files.
initialize areas with country identifiers.
initialize line segment ranges.
initialize baseline ranges.
initialize rectangular range of an area, AREA_ID, ARANGE.
initialize area attributes.
extract a requested country identifier given a known property.
get numeric area code given a two-character identifier.

get two-character area code given a numeric area code.
get three-character area code given a numeric area code.
get area text identifier given a numeric area code,

get set of line segment identifiers for an area (country).
get line segment identifiers overlapping a specified range,
get ordered list of line segment identifiers for an area polygon,
get longitude and latitude extent of an area,
get coordinates for specified line segment identifier(s).
get coordinates for polygon border of specified area,
get area identifiers for point in area range,
get area identifiers for point in area,
get set of baseline identifiers for an area (country).
get coordinates for baselines of specified area,
perform point in polygon test,
include file for applications

55

Appendix 0: Summary of test programs

mit 01.c Test area/country identification code transformations.
mjt_01.exe method code_n code_a
For termination, enter: 0 0 code_a

mit 02 c Test line identifier retrieval by range.
mjt 02.exe lon_min lon_max latjmxn lat_max

mjt 03.c Test line identifier retrieval by area code,
mj t_03.exe area_code_n

mjt 04.c Test area identifier (in range) retrieval by specified point.
~~ mjt_04.exe lon_deg lat_deg

mit 05.c Test line segment data retrieval.
mjt_05.exe seg_file_path seg_id

mit 06 c Test line coordinate data retrieval by area code.
mjt_06.exe seg_file_path area_code_n

mjt 07.c Test area border data retrieval by area code.
mj t_07.exe area_code_n

mjt 08.c Test range retrieval by area code,
mj t_0 8.exe area_code_n

mjt 09.c Test area/country identifier (in polygon) retrieval by point.
mjt_09.exe lon_deg lat_deg

mjt 10-c Test baseline identifier retrieval by area code.
_ mjt_10.exe area_code_n

mjt 11.c Test attribute retrieval by area code.
~ mjt_ll.exe area_code_n

56

0°

REPORT DOCUMENTATION PAGE
form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources.
aatherinoand maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect ot this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jefferson
Dam Highway Suite 1204 Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

3 March 1999
3. REPORT TYPE AND DATES COVERED

Final 1/1/98 »- 12/31/98
4. TITLE AND SUBTITLE

Marine Jurisdictions Digital Database

6. AUTHOR(S)

Roger A. Goldsmith

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Woods Hole Oceanographic Institution
Woods Hole, MA 02543

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research, Code 321RF'
800 North Quincy St.
Arlington, VA 22217

5. FUNDING NUMBERS

N00014^98T-.1~0276

8. PERFORMING ORGANIZATION
REPORT NUMBER

None

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release
Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The purpose of this project was to take the data gathered for the Maritime Claims chart and
create a Maritime Jurisdictions digital database suitable for use with oceanographic mission
planning objectives. To accomplish this a themed data set, associated tables, prototype
processing software and documentation was developed. While GIS systems readily lend
themselves to this task and the eventual application of the resulting data set, this product is
generated as ASCII files with positions recorded in decimal degrees. This was done so as to
maximize the deployment options. Users should be able to incorporate this data set into their
own applications using a variety of hardware and operating systems. In this context it should
also be noted this is not a deployable navigation and display application. The operating
environments of the potential user community are simply too diverse. For display applications
alone there are software packages such as Matlab, gmt, Surfer/Map Viewer, Arc View, Atlas GIS,
AutoCAD and many others, all driving a variety of CRTs, pen plotters and laser printers. To
accommodate this diversity the product was made as a simple, easy to understand database that
can be incorporated into a variety of applications.

U. SUBJECT TERMS

Marine Jurisdictions
Coastal State Boundaries

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

